Step |
Hyp |
Ref |
Expression |
1 |
|
domprobmeas |
|- ( P e. Prob -> P e. ( measures ` dom P ) ) |
2 |
1
|
3ad2ant1 |
|- ( ( P e. Prob /\ B e. dom P /\ ( P ` B ) =/= 0 ) -> P e. ( measures ` dom P ) ) |
3 |
|
simp2 |
|- ( ( P e. Prob /\ B e. dom P /\ ( P ` B ) =/= 0 ) -> B e. dom P ) |
4 |
|
prob01 |
|- ( ( P e. Prob /\ B e. dom P ) -> ( P ` B ) e. ( 0 [,] 1 ) ) |
5 |
4
|
3adant3 |
|- ( ( P e. Prob /\ B e. dom P /\ ( P ` B ) =/= 0 ) -> ( P ` B ) e. ( 0 [,] 1 ) ) |
6 |
|
elunitrn |
|- ( ( P ` B ) e. ( 0 [,] 1 ) -> ( P ` B ) e. RR ) |
7 |
5 6
|
syl |
|- ( ( P e. Prob /\ B e. dom P /\ ( P ` B ) =/= 0 ) -> ( P ` B ) e. RR ) |
8 |
|
elunitge0 |
|- ( ( P ` B ) e. ( 0 [,] 1 ) -> 0 <_ ( P ` B ) ) |
9 |
5 8
|
syl |
|- ( ( P e. Prob /\ B e. dom P /\ ( P ` B ) =/= 0 ) -> 0 <_ ( P ` B ) ) |
10 |
|
simp3 |
|- ( ( P e. Prob /\ B e. dom P /\ ( P ` B ) =/= 0 ) -> ( P ` B ) =/= 0 ) |
11 |
7 9 10
|
ne0gt0d |
|- ( ( P e. Prob /\ B e. dom P /\ ( P ` B ) =/= 0 ) -> 0 < ( P ` B ) ) |
12 |
7 11
|
elrpd |
|- ( ( P e. Prob /\ B e. dom P /\ ( P ` B ) =/= 0 ) -> ( P ` B ) e. RR+ ) |
13 |
|
probmeasb |
|- ( ( P e. ( measures ` dom P ) /\ B e. dom P /\ ( P ` B ) e. RR+ ) -> ( a e. dom P |-> ( ( P ` ( a i^i B ) ) / ( P ` B ) ) ) e. Prob ) |
14 |
2 3 12 13
|
syl3anc |
|- ( ( P e. Prob /\ B e. dom P /\ ( P ` B ) =/= 0 ) -> ( a e. dom P |-> ( ( P ` ( a i^i B ) ) / ( P ` B ) ) ) e. Prob ) |
15 |
|
3anan32 |
|- ( ( P e. Prob /\ a e. dom P /\ B e. dom P ) <-> ( ( P e. Prob /\ B e. dom P ) /\ a e. dom P ) ) |
16 |
|
cndprobval |
|- ( ( P e. Prob /\ a e. dom P /\ B e. dom P ) -> ( ( cprob ` P ) ` <. a , B >. ) = ( ( P ` ( a i^i B ) ) / ( P ` B ) ) ) |
17 |
15 16
|
sylbir |
|- ( ( ( P e. Prob /\ B e. dom P ) /\ a e. dom P ) -> ( ( cprob ` P ) ` <. a , B >. ) = ( ( P ` ( a i^i B ) ) / ( P ` B ) ) ) |
18 |
17
|
mpteq2dva |
|- ( ( P e. Prob /\ B e. dom P ) -> ( a e. dom P |-> ( ( cprob ` P ) ` <. a , B >. ) ) = ( a e. dom P |-> ( ( P ` ( a i^i B ) ) / ( P ` B ) ) ) ) |
19 |
18
|
eleq1d |
|- ( ( P e. Prob /\ B e. dom P ) -> ( ( a e. dom P |-> ( ( cprob ` P ) ` <. a , B >. ) ) e. Prob <-> ( a e. dom P |-> ( ( P ` ( a i^i B ) ) / ( P ` B ) ) ) e. Prob ) ) |
20 |
19
|
3adant3 |
|- ( ( P e. Prob /\ B e. dom P /\ ( P ` B ) =/= 0 ) -> ( ( a e. dom P |-> ( ( cprob ` P ) ` <. a , B >. ) ) e. Prob <-> ( a e. dom P |-> ( ( P ` ( a i^i B ) ) / ( P ` B ) ) ) e. Prob ) ) |
21 |
14 20
|
mpbird |
|- ( ( P e. Prob /\ B e. dom P /\ ( P ` B ) =/= 0 ) -> ( a e. dom P |-> ( ( cprob ` P ) ` <. a , B >. ) ) e. Prob ) |