Metamath Proof Explorer


Theorem cndprobprob

Description: The conditional probability defines a probability law. (Contributed by Thierry Arnoux, 23-Dec-2016) (Revised by Thierry Arnoux, 21-Jan-2017)

Ref Expression
Assertion cndprobprob P Prob B dom P P B 0 a dom P cProb P a B Prob

Proof

Step Hyp Ref Expression
1 domprobmeas P Prob P measures dom P
2 1 3ad2ant1 P Prob B dom P P B 0 P measures dom P
3 simp2 P Prob B dom P P B 0 B dom P
4 prob01 P Prob B dom P P B 0 1
5 4 3adant3 P Prob B dom P P B 0 P B 0 1
6 elunitrn P B 0 1 P B
7 5 6 syl P Prob B dom P P B 0 P B
8 elunitge0 P B 0 1 0 P B
9 5 8 syl P Prob B dom P P B 0 0 P B
10 simp3 P Prob B dom P P B 0 P B 0
11 7 9 10 ne0gt0d P Prob B dom P P B 0 0 < P B
12 7 11 elrpd P Prob B dom P P B 0 P B +
13 probmeasb P measures dom P B dom P P B + a dom P P a B P B Prob
14 2 3 12 13 syl3anc P Prob B dom P P B 0 a dom P P a B P B Prob
15 3anan32 P Prob a dom P B dom P P Prob B dom P a dom P
16 cndprobval P Prob a dom P B dom P cProb P a B = P a B P B
17 15 16 sylbir P Prob B dom P a dom P cProb P a B = P a B P B
18 17 mpteq2dva P Prob B dom P a dom P cProb P a B = a dom P P a B P B
19 18 eleq1d P Prob B dom P a dom P cProb P a B Prob a dom P P a B P B Prob
20 19 3adant3 P Prob B dom P P B 0 a dom P cProb P a B Prob a dom P P a B P B Prob
21 14 20 mpbird P Prob B dom P P B 0 a dom P cProb P a B Prob