Metamath Proof Explorer


Theorem probmeasb

Description: Build a probability from a measure and a set with finite measure. (Contributed by Thierry Arnoux, 25-Dec-2016)

Ref Expression
Assertion probmeasb M measures S A S M A + x S M x A M A Prob

Proof

Step Hyp Ref Expression
1 measinb M measures S A S y S M y A measures S
2 measdivcstALTV y S M y A measures S M A + x S y S M y A x ÷ 𝑒 M A measures S
3 1 2 stoic3 M measures S A S M A + x S y S M y A x ÷ 𝑒 M A measures S
4 eqidd M measures S A S M A + x S y S M y A = y S M y A
5 simpr M measures S A S M A + x S y = x y = x
6 5 ineq1d M measures S A S M A + x S y = x y A = x A
7 6 fveq2d M measures S A S M A + x S y = x M y A = M x A
8 simpr M measures S A S M A + x S x S
9 simp1 M measures S A S M A + M measures S
10 9 adantr M measures S A S M A + x S M measures S
11 measbase M measures S S ran sigAlgebra
12 10 11 syl M measures S A S M A + x S S ran sigAlgebra
13 simp2 M measures S A S M A + A S
14 13 adantr M measures S A S M A + x S A S
15 inelsiga S ran sigAlgebra x S A S x A S
16 12 8 14 15 syl3anc M measures S A S M A + x S x A S
17 measvxrge0 M measures S x A S M x A 0 +∞
18 10 16 17 syl2anc M measures S A S M A + x S M x A 0 +∞
19 4 7 8 18 fvmptd M measures S A S M A + x S y S M y A x = M x A
20 19 oveq1d M measures S A S M A + x S y S M y A x ÷ 𝑒 M A = M x A ÷ 𝑒 M A
21 iccssxr 0 +∞ *
22 21 18 sselid M measures S A S M A + x S M x A *
23 simp3 M measures S A S M A + M A +
24 23 adantr M measures S A S M A + x S M A +
25 24 rpred M measures S A S M A + x S M A
26 0xr 0 *
27 pnfxr +∞ *
28 iccgelb 0 * +∞ * M x A 0 +∞ 0 M x A
29 26 27 28 mp3an12 M x A 0 +∞ 0 M x A
30 18 29 syl M measures S A S M A + x S 0 M x A
31 inss2 x A A
32 31 a1i M measures S A S M A + x S x A A
33 10 16 14 32 measssd M measures S A S M A + x S M x A M A
34 xrrege0 M x A * M A 0 M x A M x A M A M x A
35 22 25 30 33 34 syl22anc M measures S A S M A + x S M x A
36 24 rpne0d M measures S A S M A + x S M A 0
37 rexdiv M x A M A M A 0 M x A ÷ 𝑒 M A = M x A M A
38 35 25 36 37 syl3anc M measures S A S M A + x S M x A ÷ 𝑒 M A = M x A M A
39 20 38 eqtrd M measures S A S M A + x S y S M y A x ÷ 𝑒 M A = M x A M A
40 39 mpteq2dva M measures S A S M A + x S y S M y A x ÷ 𝑒 M A = x S M x A M A
41 35 24 rerpdivcld M measures S A S M A + x S M x A M A
42 41 ralrimiva M measures S A S M A + x S M x A M A
43 dmmptg x S M x A M A dom x S M x A M A = S
44 42 43 syl M measures S A S M A + dom x S M x A M A = S
45 44 fveq2d M measures S A S M A + measures dom x S M x A M A = measures S
46 45 eqcomd M measures S A S M A + measures S = measures dom x S M x A M A
47 3 40 46 3eltr3d M measures S A S M A + x S M x A M A measures dom x S M x A M A
48 measbasedom x S M x A M A ran measures x S M x A M A measures dom x S M x A M A
49 47 48 sylibr M measures S A S M A + x S M x A M A ran measures
50 44 unieqd M measures S A S M A + dom x S M x A M A = S
51 50 fveq2d M measures S A S M A + x S M x A M A dom x S M x A M A = x S M x A M A S
52 eqidd M measures S A S M A + x S M x A M A = x S M x A M A
53 23 adantr M measures S A S M A + x = S M A +
54 53 rpcnd M measures S A S M A + x = S M A
55 23 rpne0d M measures S A S M A + M A 0
56 55 adantr M measures S A S M A + x = S M A 0
57 simpr M measures S A S M A + x = S x = S
58 57 ineq1d M measures S A S M A + x = S x A = S A
59 incom S A = A S
60 elssuni A S A S
61 df-ss A S A S = A
62 60 61 sylib A S A S = A
63 59 62 syl5eq A S S A = A
64 13 63 syl M measures S A S M A + S A = A
65 64 adantr M measures S A S M A + x = S S A = A
66 58 65 eqtrd M measures S A S M A + x = S x A = A
67 66 fveq2d M measures S A S M A + x = S M x A = M A
68 54 56 67 diveq1bd M measures S A S M A + x = S M x A M A = 1
69 sgon S ran sigAlgebra S sigAlgebra S
70 baselsiga S sigAlgebra S S S
71 9 11 69 70 4syl M measures S A S M A + S S
72 1red M measures S A S M A + 1
73 52 68 71 72 fvmptd M measures S A S M A + x S M x A M A S = 1
74 51 73 eqtrd M measures S A S M A + x S M x A M A dom x S M x A M A = 1
75 elprob x S M x A M A Prob x S M x A M A ran measures x S M x A M A dom x S M x A M A = 1
76 49 74 75 sylanbrc M measures S A S M A + x S M x A M A Prob