Step |
Hyp |
Ref |
Expression |
1 |
|
measinb |
|- ( ( M e. ( measures ` S ) /\ A e. S ) -> ( y e. S |-> ( M ` ( y i^i A ) ) ) e. ( measures ` S ) ) |
2 |
|
measdivcstALTV |
|- ( ( ( y e. S |-> ( M ` ( y i^i A ) ) ) e. ( measures ` S ) /\ ( M ` A ) e. RR+ ) -> ( x e. S |-> ( ( ( y e. S |-> ( M ` ( y i^i A ) ) ) ` x ) /e ( M ` A ) ) ) e. ( measures ` S ) ) |
3 |
1 2
|
stoic3 |
|- ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) -> ( x e. S |-> ( ( ( y e. S |-> ( M ` ( y i^i A ) ) ) ` x ) /e ( M ` A ) ) ) e. ( measures ` S ) ) |
4 |
|
eqidd |
|- ( ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) /\ x e. S ) -> ( y e. S |-> ( M ` ( y i^i A ) ) ) = ( y e. S |-> ( M ` ( y i^i A ) ) ) ) |
5 |
|
simpr |
|- ( ( ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) /\ x e. S ) /\ y = x ) -> y = x ) |
6 |
5
|
ineq1d |
|- ( ( ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) /\ x e. S ) /\ y = x ) -> ( y i^i A ) = ( x i^i A ) ) |
7 |
6
|
fveq2d |
|- ( ( ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) /\ x e. S ) /\ y = x ) -> ( M ` ( y i^i A ) ) = ( M ` ( x i^i A ) ) ) |
8 |
|
simpr |
|- ( ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) /\ x e. S ) -> x e. S ) |
9 |
|
simp1 |
|- ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) -> M e. ( measures ` S ) ) |
10 |
9
|
adantr |
|- ( ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) /\ x e. S ) -> M e. ( measures ` S ) ) |
11 |
|
measbase |
|- ( M e. ( measures ` S ) -> S e. U. ran sigAlgebra ) |
12 |
10 11
|
syl |
|- ( ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) /\ x e. S ) -> S e. U. ran sigAlgebra ) |
13 |
|
simp2 |
|- ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) -> A e. S ) |
14 |
13
|
adantr |
|- ( ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) /\ x e. S ) -> A e. S ) |
15 |
|
inelsiga |
|- ( ( S e. U. ran sigAlgebra /\ x e. S /\ A e. S ) -> ( x i^i A ) e. S ) |
16 |
12 8 14 15
|
syl3anc |
|- ( ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) /\ x e. S ) -> ( x i^i A ) e. S ) |
17 |
|
measvxrge0 |
|- ( ( M e. ( measures ` S ) /\ ( x i^i A ) e. S ) -> ( M ` ( x i^i A ) ) e. ( 0 [,] +oo ) ) |
18 |
10 16 17
|
syl2anc |
|- ( ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) /\ x e. S ) -> ( M ` ( x i^i A ) ) e. ( 0 [,] +oo ) ) |
19 |
4 7 8 18
|
fvmptd |
|- ( ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) /\ x e. S ) -> ( ( y e. S |-> ( M ` ( y i^i A ) ) ) ` x ) = ( M ` ( x i^i A ) ) ) |
20 |
19
|
oveq1d |
|- ( ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) /\ x e. S ) -> ( ( ( y e. S |-> ( M ` ( y i^i A ) ) ) ` x ) /e ( M ` A ) ) = ( ( M ` ( x i^i A ) ) /e ( M ` A ) ) ) |
21 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
22 |
21 18
|
sselid |
|- ( ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) /\ x e. S ) -> ( M ` ( x i^i A ) ) e. RR* ) |
23 |
|
simp3 |
|- ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) -> ( M ` A ) e. RR+ ) |
24 |
23
|
adantr |
|- ( ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) /\ x e. S ) -> ( M ` A ) e. RR+ ) |
25 |
24
|
rpred |
|- ( ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) /\ x e. S ) -> ( M ` A ) e. RR ) |
26 |
|
0xr |
|- 0 e. RR* |
27 |
|
pnfxr |
|- +oo e. RR* |
28 |
|
iccgelb |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ ( M ` ( x i^i A ) ) e. ( 0 [,] +oo ) ) -> 0 <_ ( M ` ( x i^i A ) ) ) |
29 |
26 27 28
|
mp3an12 |
|- ( ( M ` ( x i^i A ) ) e. ( 0 [,] +oo ) -> 0 <_ ( M ` ( x i^i A ) ) ) |
30 |
18 29
|
syl |
|- ( ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) /\ x e. S ) -> 0 <_ ( M ` ( x i^i A ) ) ) |
31 |
|
inss2 |
|- ( x i^i A ) C_ A |
32 |
31
|
a1i |
|- ( ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) /\ x e. S ) -> ( x i^i A ) C_ A ) |
33 |
10 16 14 32
|
measssd |
|- ( ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) /\ x e. S ) -> ( M ` ( x i^i A ) ) <_ ( M ` A ) ) |
34 |
|
xrrege0 |
|- ( ( ( ( M ` ( x i^i A ) ) e. RR* /\ ( M ` A ) e. RR ) /\ ( 0 <_ ( M ` ( x i^i A ) ) /\ ( M ` ( x i^i A ) ) <_ ( M ` A ) ) ) -> ( M ` ( x i^i A ) ) e. RR ) |
35 |
22 25 30 33 34
|
syl22anc |
|- ( ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) /\ x e. S ) -> ( M ` ( x i^i A ) ) e. RR ) |
36 |
24
|
rpne0d |
|- ( ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) /\ x e. S ) -> ( M ` A ) =/= 0 ) |
37 |
|
rexdiv |
|- ( ( ( M ` ( x i^i A ) ) e. RR /\ ( M ` A ) e. RR /\ ( M ` A ) =/= 0 ) -> ( ( M ` ( x i^i A ) ) /e ( M ` A ) ) = ( ( M ` ( x i^i A ) ) / ( M ` A ) ) ) |
38 |
35 25 36 37
|
syl3anc |
|- ( ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) /\ x e. S ) -> ( ( M ` ( x i^i A ) ) /e ( M ` A ) ) = ( ( M ` ( x i^i A ) ) / ( M ` A ) ) ) |
39 |
20 38
|
eqtrd |
|- ( ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) /\ x e. S ) -> ( ( ( y e. S |-> ( M ` ( y i^i A ) ) ) ` x ) /e ( M ` A ) ) = ( ( M ` ( x i^i A ) ) / ( M ` A ) ) ) |
40 |
39
|
mpteq2dva |
|- ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) -> ( x e. S |-> ( ( ( y e. S |-> ( M ` ( y i^i A ) ) ) ` x ) /e ( M ` A ) ) ) = ( x e. S |-> ( ( M ` ( x i^i A ) ) / ( M ` A ) ) ) ) |
41 |
35 24
|
rerpdivcld |
|- ( ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) /\ x e. S ) -> ( ( M ` ( x i^i A ) ) / ( M ` A ) ) e. RR ) |
42 |
41
|
ralrimiva |
|- ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) -> A. x e. S ( ( M ` ( x i^i A ) ) / ( M ` A ) ) e. RR ) |
43 |
|
dmmptg |
|- ( A. x e. S ( ( M ` ( x i^i A ) ) / ( M ` A ) ) e. RR -> dom ( x e. S |-> ( ( M ` ( x i^i A ) ) / ( M ` A ) ) ) = S ) |
44 |
42 43
|
syl |
|- ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) -> dom ( x e. S |-> ( ( M ` ( x i^i A ) ) / ( M ` A ) ) ) = S ) |
45 |
44
|
fveq2d |
|- ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) -> ( measures ` dom ( x e. S |-> ( ( M ` ( x i^i A ) ) / ( M ` A ) ) ) ) = ( measures ` S ) ) |
46 |
45
|
eqcomd |
|- ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) -> ( measures ` S ) = ( measures ` dom ( x e. S |-> ( ( M ` ( x i^i A ) ) / ( M ` A ) ) ) ) ) |
47 |
3 40 46
|
3eltr3d |
|- ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) -> ( x e. S |-> ( ( M ` ( x i^i A ) ) / ( M ` A ) ) ) e. ( measures ` dom ( x e. S |-> ( ( M ` ( x i^i A ) ) / ( M ` A ) ) ) ) ) |
48 |
|
measbasedom |
|- ( ( x e. S |-> ( ( M ` ( x i^i A ) ) / ( M ` A ) ) ) e. U. ran measures <-> ( x e. S |-> ( ( M ` ( x i^i A ) ) / ( M ` A ) ) ) e. ( measures ` dom ( x e. S |-> ( ( M ` ( x i^i A ) ) / ( M ` A ) ) ) ) ) |
49 |
47 48
|
sylibr |
|- ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) -> ( x e. S |-> ( ( M ` ( x i^i A ) ) / ( M ` A ) ) ) e. U. ran measures ) |
50 |
44
|
unieqd |
|- ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) -> U. dom ( x e. S |-> ( ( M ` ( x i^i A ) ) / ( M ` A ) ) ) = U. S ) |
51 |
50
|
fveq2d |
|- ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) -> ( ( x e. S |-> ( ( M ` ( x i^i A ) ) / ( M ` A ) ) ) ` U. dom ( x e. S |-> ( ( M ` ( x i^i A ) ) / ( M ` A ) ) ) ) = ( ( x e. S |-> ( ( M ` ( x i^i A ) ) / ( M ` A ) ) ) ` U. S ) ) |
52 |
|
eqidd |
|- ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) -> ( x e. S |-> ( ( M ` ( x i^i A ) ) / ( M ` A ) ) ) = ( x e. S |-> ( ( M ` ( x i^i A ) ) / ( M ` A ) ) ) ) |
53 |
23
|
adantr |
|- ( ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) /\ x = U. S ) -> ( M ` A ) e. RR+ ) |
54 |
53
|
rpcnd |
|- ( ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) /\ x = U. S ) -> ( M ` A ) e. CC ) |
55 |
23
|
rpne0d |
|- ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) -> ( M ` A ) =/= 0 ) |
56 |
55
|
adantr |
|- ( ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) /\ x = U. S ) -> ( M ` A ) =/= 0 ) |
57 |
|
simpr |
|- ( ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) /\ x = U. S ) -> x = U. S ) |
58 |
57
|
ineq1d |
|- ( ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) /\ x = U. S ) -> ( x i^i A ) = ( U. S i^i A ) ) |
59 |
|
incom |
|- ( U. S i^i A ) = ( A i^i U. S ) |
60 |
|
elssuni |
|- ( A e. S -> A C_ U. S ) |
61 |
|
df-ss |
|- ( A C_ U. S <-> ( A i^i U. S ) = A ) |
62 |
60 61
|
sylib |
|- ( A e. S -> ( A i^i U. S ) = A ) |
63 |
59 62
|
eqtrid |
|- ( A e. S -> ( U. S i^i A ) = A ) |
64 |
13 63
|
syl |
|- ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) -> ( U. S i^i A ) = A ) |
65 |
64
|
adantr |
|- ( ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) /\ x = U. S ) -> ( U. S i^i A ) = A ) |
66 |
58 65
|
eqtrd |
|- ( ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) /\ x = U. S ) -> ( x i^i A ) = A ) |
67 |
66
|
fveq2d |
|- ( ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) /\ x = U. S ) -> ( M ` ( x i^i A ) ) = ( M ` A ) ) |
68 |
54 56 67
|
diveq1bd |
|- ( ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) /\ x = U. S ) -> ( ( M ` ( x i^i A ) ) / ( M ` A ) ) = 1 ) |
69 |
|
sgon |
|- ( S e. U. ran sigAlgebra -> S e. ( sigAlgebra ` U. S ) ) |
70 |
|
baselsiga |
|- ( S e. ( sigAlgebra ` U. S ) -> U. S e. S ) |
71 |
9 11 69 70
|
4syl |
|- ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) -> U. S e. S ) |
72 |
|
1red |
|- ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) -> 1 e. RR ) |
73 |
52 68 71 72
|
fvmptd |
|- ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) -> ( ( x e. S |-> ( ( M ` ( x i^i A ) ) / ( M ` A ) ) ) ` U. S ) = 1 ) |
74 |
51 73
|
eqtrd |
|- ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) -> ( ( x e. S |-> ( ( M ` ( x i^i A ) ) / ( M ` A ) ) ) ` U. dom ( x e. S |-> ( ( M ` ( x i^i A ) ) / ( M ` A ) ) ) ) = 1 ) |
75 |
|
elprob |
|- ( ( x e. S |-> ( ( M ` ( x i^i A ) ) / ( M ` A ) ) ) e. Prob <-> ( ( x e. S |-> ( ( M ` ( x i^i A ) ) / ( M ` A ) ) ) e. U. ran measures /\ ( ( x e. S |-> ( ( M ` ( x i^i A ) ) / ( M ` A ) ) ) ` U. dom ( x e. S |-> ( ( M ` ( x i^i A ) ) / ( M ` A ) ) ) ) = 1 ) ) |
76 |
49 74 75
|
sylanbrc |
|- ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) e. RR+ ) -> ( x e. S |-> ( ( M ` ( x i^i A ) ) / ( M ` A ) ) ) e. Prob ) |