Step |
Hyp |
Ref |
Expression |
1 |
|
domprobmeas |
⊢ ( 𝑃 ∈ Prob → 𝑃 ∈ ( measures ‘ dom 𝑃 ) ) |
2 |
1
|
3ad2ant1 |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃 ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → 𝑃 ∈ ( measures ‘ dom 𝑃 ) ) |
3 |
|
simp2 |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃 ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → 𝐵 ∈ dom 𝑃 ) |
4 |
|
prob01 |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃 ) → ( 𝑃 ‘ 𝐵 ) ∈ ( 0 [,] 1 ) ) |
5 |
4
|
3adant3 |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃 ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → ( 𝑃 ‘ 𝐵 ) ∈ ( 0 [,] 1 ) ) |
6 |
|
elunitrn |
⊢ ( ( 𝑃 ‘ 𝐵 ) ∈ ( 0 [,] 1 ) → ( 𝑃 ‘ 𝐵 ) ∈ ℝ ) |
7 |
5 6
|
syl |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃 ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → ( 𝑃 ‘ 𝐵 ) ∈ ℝ ) |
8 |
|
elunitge0 |
⊢ ( ( 𝑃 ‘ 𝐵 ) ∈ ( 0 [,] 1 ) → 0 ≤ ( 𝑃 ‘ 𝐵 ) ) |
9 |
5 8
|
syl |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃 ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → 0 ≤ ( 𝑃 ‘ 𝐵 ) ) |
10 |
|
simp3 |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃 ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → ( 𝑃 ‘ 𝐵 ) ≠ 0 ) |
11 |
7 9 10
|
ne0gt0d |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃 ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → 0 < ( 𝑃 ‘ 𝐵 ) ) |
12 |
7 11
|
elrpd |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃 ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → ( 𝑃 ‘ 𝐵 ) ∈ ℝ+ ) |
13 |
|
probmeasb |
⊢ ( ( 𝑃 ∈ ( measures ‘ dom 𝑃 ) ∧ 𝐵 ∈ dom 𝑃 ∧ ( 𝑃 ‘ 𝐵 ) ∈ ℝ+ ) → ( 𝑎 ∈ dom 𝑃 ↦ ( ( 𝑃 ‘ ( 𝑎 ∩ 𝐵 ) ) / ( 𝑃 ‘ 𝐵 ) ) ) ∈ Prob ) |
14 |
2 3 12 13
|
syl3anc |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃 ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → ( 𝑎 ∈ dom 𝑃 ↦ ( ( 𝑃 ‘ ( 𝑎 ∩ 𝐵 ) ) / ( 𝑃 ‘ 𝐵 ) ) ) ∈ Prob ) |
15 |
|
3anan32 |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝑎 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ↔ ( ( 𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃 ) ∧ 𝑎 ∈ dom 𝑃 ) ) |
16 |
|
cndprobval |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝑎 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) → ( ( cprob ‘ 𝑃 ) ‘ 〈 𝑎 , 𝐵 〉 ) = ( ( 𝑃 ‘ ( 𝑎 ∩ 𝐵 ) ) / ( 𝑃 ‘ 𝐵 ) ) ) |
17 |
15 16
|
sylbir |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃 ) ∧ 𝑎 ∈ dom 𝑃 ) → ( ( cprob ‘ 𝑃 ) ‘ 〈 𝑎 , 𝐵 〉 ) = ( ( 𝑃 ‘ ( 𝑎 ∩ 𝐵 ) ) / ( 𝑃 ‘ 𝐵 ) ) ) |
18 |
17
|
mpteq2dva |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃 ) → ( 𝑎 ∈ dom 𝑃 ↦ ( ( cprob ‘ 𝑃 ) ‘ 〈 𝑎 , 𝐵 〉 ) ) = ( 𝑎 ∈ dom 𝑃 ↦ ( ( 𝑃 ‘ ( 𝑎 ∩ 𝐵 ) ) / ( 𝑃 ‘ 𝐵 ) ) ) ) |
19 |
18
|
eleq1d |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃 ) → ( ( 𝑎 ∈ dom 𝑃 ↦ ( ( cprob ‘ 𝑃 ) ‘ 〈 𝑎 , 𝐵 〉 ) ) ∈ Prob ↔ ( 𝑎 ∈ dom 𝑃 ↦ ( ( 𝑃 ‘ ( 𝑎 ∩ 𝐵 ) ) / ( 𝑃 ‘ 𝐵 ) ) ) ∈ Prob ) ) |
20 |
19
|
3adant3 |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃 ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → ( ( 𝑎 ∈ dom 𝑃 ↦ ( ( cprob ‘ 𝑃 ) ‘ 〈 𝑎 , 𝐵 〉 ) ) ∈ Prob ↔ ( 𝑎 ∈ dom 𝑃 ↦ ( ( 𝑃 ‘ ( 𝑎 ∩ 𝐵 ) ) / ( 𝑃 ‘ 𝐵 ) ) ) ∈ Prob ) ) |
21 |
14 20
|
mpbird |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃 ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → ( 𝑎 ∈ dom 𝑃 ↦ ( ( cprob ‘ 𝑃 ) ‘ 〈 𝑎 , 𝐵 〉 ) ) ∈ Prob ) |