Step |
Hyp |
Ref |
Expression |
1 |
|
unitsscn |
⊢ ( 0 [,] 1 ) ⊆ ℂ |
2 |
|
cndprob01 |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → ( ( cprob ‘ 𝑃 ) ‘ 〈 𝐴 , 𝐵 〉 ) ∈ ( 0 [,] 1 ) ) |
3 |
2
|
3adant2 |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ ( 𝑃 ‘ 𝐴 ) ≠ 0 ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → ( ( cprob ‘ 𝑃 ) ‘ 〈 𝐴 , 𝐵 〉 ) ∈ ( 0 [,] 1 ) ) |
4 |
1 3
|
sselid |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ ( 𝑃 ‘ 𝐴 ) ≠ 0 ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → ( ( cprob ‘ 𝑃 ) ‘ 〈 𝐴 , 𝐵 〉 ) ∈ ℂ ) |
5 |
|
simp11 |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ ( 𝑃 ‘ 𝐴 ) ≠ 0 ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → 𝑃 ∈ Prob ) |
6 |
|
simp13 |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ ( 𝑃 ‘ 𝐴 ) ≠ 0 ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → 𝐵 ∈ dom 𝑃 ) |
7 |
|
prob01 |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃 ) → ( 𝑃 ‘ 𝐵 ) ∈ ( 0 [,] 1 ) ) |
8 |
5 6 7
|
syl2anc |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ ( 𝑃 ‘ 𝐴 ) ≠ 0 ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → ( 𝑃 ‘ 𝐵 ) ∈ ( 0 [,] 1 ) ) |
9 |
1 8
|
sselid |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ ( 𝑃 ‘ 𝐴 ) ≠ 0 ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → ( 𝑃 ‘ 𝐵 ) ∈ ℂ ) |
10 |
|
simp3 |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ ( 𝑃 ‘ 𝐴 ) ≠ 0 ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → ( 𝑃 ‘ 𝐵 ) ≠ 0 ) |
11 |
4 9 10
|
divcan4d |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ ( 𝑃 ‘ 𝐴 ) ≠ 0 ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → ( ( ( ( cprob ‘ 𝑃 ) ‘ 〈 𝐴 , 𝐵 〉 ) · ( 𝑃 ‘ 𝐵 ) ) / ( 𝑃 ‘ 𝐵 ) ) = ( ( cprob ‘ 𝑃 ) ‘ 〈 𝐴 , 𝐵 〉 ) ) |
12 |
|
incom |
⊢ ( 𝐴 ∩ 𝐵 ) = ( 𝐵 ∩ 𝐴 ) |
13 |
12
|
fveq2i |
⊢ ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) = ( 𝑃 ‘ ( 𝐵 ∩ 𝐴 ) ) |
14 |
|
cndprobin |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → ( ( ( cprob ‘ 𝑃 ) ‘ 〈 𝐴 , 𝐵 〉 ) · ( 𝑃 ‘ 𝐵 ) ) = ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) ) |
15 |
14
|
3adant2 |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ ( 𝑃 ‘ 𝐴 ) ≠ 0 ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → ( ( ( cprob ‘ 𝑃 ) ‘ 〈 𝐴 , 𝐵 〉 ) · ( 𝑃 ‘ 𝐵 ) ) = ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) ) |
16 |
|
simp12 |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ ( 𝑃 ‘ 𝐴 ) ≠ 0 ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → 𝐴 ∈ dom 𝑃 ) |
17 |
|
simp2 |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ ( 𝑃 ‘ 𝐴 ) ≠ 0 ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → ( 𝑃 ‘ 𝐴 ) ≠ 0 ) |
18 |
|
cndprobin |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃 ∧ 𝐴 ∈ dom 𝑃 ) ∧ ( 𝑃 ‘ 𝐴 ) ≠ 0 ) → ( ( ( cprob ‘ 𝑃 ) ‘ 〈 𝐵 , 𝐴 〉 ) · ( 𝑃 ‘ 𝐴 ) ) = ( 𝑃 ‘ ( 𝐵 ∩ 𝐴 ) ) ) |
19 |
5 6 16 17 18
|
syl31anc |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ ( 𝑃 ‘ 𝐴 ) ≠ 0 ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → ( ( ( cprob ‘ 𝑃 ) ‘ 〈 𝐵 , 𝐴 〉 ) · ( 𝑃 ‘ 𝐴 ) ) = ( 𝑃 ‘ ( 𝐵 ∩ 𝐴 ) ) ) |
20 |
13 15 19
|
3eqtr4a |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ ( 𝑃 ‘ 𝐴 ) ≠ 0 ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → ( ( ( cprob ‘ 𝑃 ) ‘ 〈 𝐴 , 𝐵 〉 ) · ( 𝑃 ‘ 𝐵 ) ) = ( ( ( cprob ‘ 𝑃 ) ‘ 〈 𝐵 , 𝐴 〉 ) · ( 𝑃 ‘ 𝐴 ) ) ) |
21 |
20
|
oveq1d |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ ( 𝑃 ‘ 𝐴 ) ≠ 0 ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → ( ( ( ( cprob ‘ 𝑃 ) ‘ 〈 𝐴 , 𝐵 〉 ) · ( 𝑃 ‘ 𝐵 ) ) / ( 𝑃 ‘ 𝐵 ) ) = ( ( ( ( cprob ‘ 𝑃 ) ‘ 〈 𝐵 , 𝐴 〉 ) · ( 𝑃 ‘ 𝐴 ) ) / ( 𝑃 ‘ 𝐵 ) ) ) |
22 |
11 21
|
eqtr3d |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ ( 𝑃 ‘ 𝐴 ) ≠ 0 ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → ( ( cprob ‘ 𝑃 ) ‘ 〈 𝐴 , 𝐵 〉 ) = ( ( ( ( cprob ‘ 𝑃 ) ‘ 〈 𝐵 , 𝐴 〉 ) · ( 𝑃 ‘ 𝐴 ) ) / ( 𝑃 ‘ 𝐵 ) ) ) |