Step |
Hyp |
Ref |
Expression |
1 |
|
cndprobval |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) → ( ( cprob ‘ 𝑃 ) ‘ 〈 𝐴 , 𝐵 〉 ) = ( ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) / ( 𝑃 ‘ 𝐵 ) ) ) |
2 |
1
|
adantr |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → ( ( cprob ‘ 𝑃 ) ‘ 〈 𝐴 , 𝐵 〉 ) = ( ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) / ( 𝑃 ‘ 𝐵 ) ) ) |
3 |
|
simpl1 |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → 𝑃 ∈ Prob ) |
4 |
|
domprobmeas |
⊢ ( 𝑃 ∈ Prob → 𝑃 ∈ ( measures ‘ dom 𝑃 ) ) |
5 |
3 4
|
syl |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → 𝑃 ∈ ( measures ‘ dom 𝑃 ) ) |
6 |
|
domprobsiga |
⊢ ( 𝑃 ∈ Prob → dom 𝑃 ∈ ∪ ran sigAlgebra ) |
7 |
3 6
|
syl |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → dom 𝑃 ∈ ∪ ran sigAlgebra ) |
8 |
|
simpl2 |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → 𝐴 ∈ dom 𝑃 ) |
9 |
|
simpl3 |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → 𝐵 ∈ dom 𝑃 ) |
10 |
|
inelsiga |
⊢ ( ( dom 𝑃 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) → ( 𝐴 ∩ 𝐵 ) ∈ dom 𝑃 ) |
11 |
7 8 9 10
|
syl3anc |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → ( 𝐴 ∩ 𝐵 ) ∈ dom 𝑃 ) |
12 |
|
inss2 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 |
13 |
12
|
a1i |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 ) |
14 |
5 11 9 13
|
measssd |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) ≤ ( 𝑃 ‘ 𝐵 ) ) |
15 |
|
prob01 |
⊢ ( ( 𝑃 ∈ Prob ∧ ( 𝐴 ∩ 𝐵 ) ∈ dom 𝑃 ) → ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ( 0 [,] 1 ) ) |
16 |
3 11 15
|
syl2anc |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ( 0 [,] 1 ) ) |
17 |
|
prob01 |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃 ) → ( 𝑃 ‘ 𝐵 ) ∈ ( 0 [,] 1 ) ) |
18 |
3 9 17
|
syl2anc |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → ( 𝑃 ‘ 𝐵 ) ∈ ( 0 [,] 1 ) ) |
19 |
|
simpr |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → ( 𝑃 ‘ 𝐵 ) ≠ 0 ) |
20 |
|
unitdivcld |
⊢ ( ( ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ( 0 [,] 1 ) ∧ ( 𝑃 ‘ 𝐵 ) ∈ ( 0 [,] 1 ) ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → ( ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) ≤ ( 𝑃 ‘ 𝐵 ) ↔ ( ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) / ( 𝑃 ‘ 𝐵 ) ) ∈ ( 0 [,] 1 ) ) ) |
21 |
16 18 19 20
|
syl3anc |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → ( ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) ≤ ( 𝑃 ‘ 𝐵 ) ↔ ( ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) / ( 𝑃 ‘ 𝐵 ) ) ∈ ( 0 [,] 1 ) ) ) |
22 |
14 21
|
mpbid |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → ( ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) / ( 𝑃 ‘ 𝐵 ) ) ∈ ( 0 [,] 1 ) ) |
23 |
2 22
|
eqeltrd |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → ( ( cprob ‘ 𝑃 ) ‘ 〈 𝐴 , 𝐵 〉 ) ∈ ( 0 [,] 1 ) ) |