Step |
Hyp |
Ref |
Expression |
1 |
|
cndprobval |
|- ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) -> ( ( cprob ` P ) ` <. A , B >. ) = ( ( P ` ( A i^i B ) ) / ( P ` B ) ) ) |
2 |
1
|
adantr |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ ( P ` B ) =/= 0 ) -> ( ( cprob ` P ) ` <. A , B >. ) = ( ( P ` ( A i^i B ) ) / ( P ` B ) ) ) |
3 |
|
simpl1 |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ ( P ` B ) =/= 0 ) -> P e. Prob ) |
4 |
|
domprobmeas |
|- ( P e. Prob -> P e. ( measures ` dom P ) ) |
5 |
3 4
|
syl |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ ( P ` B ) =/= 0 ) -> P e. ( measures ` dom P ) ) |
6 |
|
domprobsiga |
|- ( P e. Prob -> dom P e. U. ran sigAlgebra ) |
7 |
3 6
|
syl |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ ( P ` B ) =/= 0 ) -> dom P e. U. ran sigAlgebra ) |
8 |
|
simpl2 |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ ( P ` B ) =/= 0 ) -> A e. dom P ) |
9 |
|
simpl3 |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ ( P ` B ) =/= 0 ) -> B e. dom P ) |
10 |
|
inelsiga |
|- ( ( dom P e. U. ran sigAlgebra /\ A e. dom P /\ B e. dom P ) -> ( A i^i B ) e. dom P ) |
11 |
7 8 9 10
|
syl3anc |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ ( P ` B ) =/= 0 ) -> ( A i^i B ) e. dom P ) |
12 |
|
inss2 |
|- ( A i^i B ) C_ B |
13 |
12
|
a1i |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ ( P ` B ) =/= 0 ) -> ( A i^i B ) C_ B ) |
14 |
5 11 9 13
|
measssd |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ ( P ` B ) =/= 0 ) -> ( P ` ( A i^i B ) ) <_ ( P ` B ) ) |
15 |
|
prob01 |
|- ( ( P e. Prob /\ ( A i^i B ) e. dom P ) -> ( P ` ( A i^i B ) ) e. ( 0 [,] 1 ) ) |
16 |
3 11 15
|
syl2anc |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ ( P ` B ) =/= 0 ) -> ( P ` ( A i^i B ) ) e. ( 0 [,] 1 ) ) |
17 |
|
prob01 |
|- ( ( P e. Prob /\ B e. dom P ) -> ( P ` B ) e. ( 0 [,] 1 ) ) |
18 |
3 9 17
|
syl2anc |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ ( P ` B ) =/= 0 ) -> ( P ` B ) e. ( 0 [,] 1 ) ) |
19 |
|
simpr |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ ( P ` B ) =/= 0 ) -> ( P ` B ) =/= 0 ) |
20 |
|
unitdivcld |
|- ( ( ( P ` ( A i^i B ) ) e. ( 0 [,] 1 ) /\ ( P ` B ) e. ( 0 [,] 1 ) /\ ( P ` B ) =/= 0 ) -> ( ( P ` ( A i^i B ) ) <_ ( P ` B ) <-> ( ( P ` ( A i^i B ) ) / ( P ` B ) ) e. ( 0 [,] 1 ) ) ) |
21 |
16 18 19 20
|
syl3anc |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ ( P ` B ) =/= 0 ) -> ( ( P ` ( A i^i B ) ) <_ ( P ` B ) <-> ( ( P ` ( A i^i B ) ) / ( P ` B ) ) e. ( 0 [,] 1 ) ) ) |
22 |
14 21
|
mpbid |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ ( P ` B ) =/= 0 ) -> ( ( P ` ( A i^i B ) ) / ( P ` B ) ) e. ( 0 [,] 1 ) ) |
23 |
2 22
|
eqeltrd |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ ( P ` B ) =/= 0 ) -> ( ( cprob ` P ) ` <. A , B >. ) e. ( 0 [,] 1 ) ) |