Step |
Hyp |
Ref |
Expression |
1 |
|
df-ov |
|- ( A ( cprob ` P ) B ) = ( ( cprob ` P ) ` <. A , B >. ) |
2 |
|
df-cndprob |
|- cprob = ( p e. Prob |-> ( a e. dom p , b e. dom p |-> ( ( p ` ( a i^i b ) ) / ( p ` b ) ) ) ) |
3 |
|
dmeq |
|- ( p = P -> dom p = dom P ) |
4 |
|
fveq1 |
|- ( p = P -> ( p ` ( a i^i b ) ) = ( P ` ( a i^i b ) ) ) |
5 |
|
fveq1 |
|- ( p = P -> ( p ` b ) = ( P ` b ) ) |
6 |
4 5
|
oveq12d |
|- ( p = P -> ( ( p ` ( a i^i b ) ) / ( p ` b ) ) = ( ( P ` ( a i^i b ) ) / ( P ` b ) ) ) |
7 |
3 3 6
|
mpoeq123dv |
|- ( p = P -> ( a e. dom p , b e. dom p |-> ( ( p ` ( a i^i b ) ) / ( p ` b ) ) ) = ( a e. dom P , b e. dom P |-> ( ( P ` ( a i^i b ) ) / ( P ` b ) ) ) ) |
8 |
|
id |
|- ( P e. Prob -> P e. Prob ) |
9 |
|
dmexg |
|- ( P e. Prob -> dom P e. _V ) |
10 |
|
mpoexga |
|- ( ( dom P e. _V /\ dom P e. _V ) -> ( a e. dom P , b e. dom P |-> ( ( P ` ( a i^i b ) ) / ( P ` b ) ) ) e. _V ) |
11 |
9 9 10
|
syl2anc |
|- ( P e. Prob -> ( a e. dom P , b e. dom P |-> ( ( P ` ( a i^i b ) ) / ( P ` b ) ) ) e. _V ) |
12 |
2 7 8 11
|
fvmptd3 |
|- ( P e. Prob -> ( cprob ` P ) = ( a e. dom P , b e. dom P |-> ( ( P ` ( a i^i b ) ) / ( P ` b ) ) ) ) |
13 |
12
|
3ad2ant1 |
|- ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) -> ( cprob ` P ) = ( a e. dom P , b e. dom P |-> ( ( P ` ( a i^i b ) ) / ( P ` b ) ) ) ) |
14 |
|
simprl |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ ( a = A /\ b = B ) ) -> a = A ) |
15 |
|
simprr |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ ( a = A /\ b = B ) ) -> b = B ) |
16 |
14 15
|
ineq12d |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ ( a = A /\ b = B ) ) -> ( a i^i b ) = ( A i^i B ) ) |
17 |
16
|
fveq2d |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ ( a = A /\ b = B ) ) -> ( P ` ( a i^i b ) ) = ( P ` ( A i^i B ) ) ) |
18 |
15
|
fveq2d |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ ( a = A /\ b = B ) ) -> ( P ` b ) = ( P ` B ) ) |
19 |
17 18
|
oveq12d |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ ( a = A /\ b = B ) ) -> ( ( P ` ( a i^i b ) ) / ( P ` b ) ) = ( ( P ` ( A i^i B ) ) / ( P ` B ) ) ) |
20 |
|
simp2 |
|- ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) -> A e. dom P ) |
21 |
|
simp3 |
|- ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) -> B e. dom P ) |
22 |
|
ovexd |
|- ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) -> ( ( P ` ( A i^i B ) ) / ( P ` B ) ) e. _V ) |
23 |
13 19 20 21 22
|
ovmpod |
|- ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) -> ( A ( cprob ` P ) B ) = ( ( P ` ( A i^i B ) ) / ( P ` B ) ) ) |
24 |
1 23
|
eqtr3id |
|- ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) -> ( ( cprob ` P ) ` <. A , B >. ) = ( ( P ` ( A i^i B ) ) / ( P ` B ) ) ) |