Description: Define the conditional probability. (Contributed by Thierry Arnoux, 14-Sep-2016) (Revised by Thierry Arnoux, 21-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cndprob | |- cprob = ( p e. Prob |-> ( a e. dom p , b e. dom p |-> ( ( p ` ( a i^i b ) ) / ( p ` b ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccprob | |- cprob |
|
| 1 | vp | |- p |
|
| 2 | cprb | |- Prob |
|
| 3 | va | |- a |
|
| 4 | 1 | cv | |- p |
| 5 | 4 | cdm | |- dom p |
| 6 | vb | |- b |
|
| 7 | 3 | cv | |- a |
| 8 | 6 | cv | |- b |
| 9 | 7 8 | cin | |- ( a i^i b ) |
| 10 | 9 4 | cfv | |- ( p ` ( a i^i b ) ) |
| 11 | cdiv | |- / |
|
| 12 | 8 4 | cfv | |- ( p ` b ) |
| 13 | 10 12 11 | co | |- ( ( p ` ( a i^i b ) ) / ( p ` b ) ) |
| 14 | 3 6 5 5 13 | cmpo | |- ( a e. dom p , b e. dom p |-> ( ( p ` ( a i^i b ) ) / ( p ` b ) ) ) |
| 15 | 1 2 14 | cmpt | |- ( p e. Prob |-> ( a e. dom p , b e. dom p |-> ( ( p ` ( a i^i b ) ) / ( p ` b ) ) ) ) |
| 16 | 0 15 | wceq | |- cprob = ( p e. Prob |-> ( a e. dom p , b e. dom p |-> ( ( p ` ( a i^i b ) ) / ( p ` b ) ) ) ) |