Metamath Proof Explorer


Definition df-cndprob

Description: Define the conditional probability. (Contributed by Thierry Arnoux, 14-Sep-2016) (Revised by Thierry Arnoux, 21-Jan-2017)

Ref Expression
Assertion df-cndprob
|- cprob = ( p e. Prob |-> ( a e. dom p , b e. dom p |-> ( ( p ` ( a i^i b ) ) / ( p ` b ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccprob
 |-  cprob
1 vp
 |-  p
2 cprb
 |-  Prob
3 va
 |-  a
4 1 cv
 |-  p
5 4 cdm
 |-  dom p
6 vb
 |-  b
7 3 cv
 |-  a
8 6 cv
 |-  b
9 7 8 cin
 |-  ( a i^i b )
10 9 4 cfv
 |-  ( p ` ( a i^i b ) )
11 cdiv
 |-  /
12 8 4 cfv
 |-  ( p ` b )
13 10 12 11 co
 |-  ( ( p ` ( a i^i b ) ) / ( p ` b ) )
14 3 6 5 5 13 cmpo
 |-  ( a e. dom p , b e. dom p |-> ( ( p ` ( a i^i b ) ) / ( p ` b ) ) )
15 1 2 14 cmpt
 |-  ( p e. Prob |-> ( a e. dom p , b e. dom p |-> ( ( p ` ( a i^i b ) ) / ( p ` b ) ) ) )
16 0 15 wceq
 |-  cprob = ( p e. Prob |-> ( a e. dom p , b e. dom p |-> ( ( p ` ( a i^i b ) ) / ( p ` b ) ) ) )