| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ccprob |
⊢ cprob |
| 1 |
|
vp |
⊢ 𝑝 |
| 2 |
|
cprb |
⊢ Prob |
| 3 |
|
va |
⊢ 𝑎 |
| 4 |
1
|
cv |
⊢ 𝑝 |
| 5 |
4
|
cdm |
⊢ dom 𝑝 |
| 6 |
|
vb |
⊢ 𝑏 |
| 7 |
3
|
cv |
⊢ 𝑎 |
| 8 |
6
|
cv |
⊢ 𝑏 |
| 9 |
7 8
|
cin |
⊢ ( 𝑎 ∩ 𝑏 ) |
| 10 |
9 4
|
cfv |
⊢ ( 𝑝 ‘ ( 𝑎 ∩ 𝑏 ) ) |
| 11 |
|
cdiv |
⊢ / |
| 12 |
8 4
|
cfv |
⊢ ( 𝑝 ‘ 𝑏 ) |
| 13 |
10 12 11
|
co |
⊢ ( ( 𝑝 ‘ ( 𝑎 ∩ 𝑏 ) ) / ( 𝑝 ‘ 𝑏 ) ) |
| 14 |
3 6 5 5 13
|
cmpo |
⊢ ( 𝑎 ∈ dom 𝑝 , 𝑏 ∈ dom 𝑝 ↦ ( ( 𝑝 ‘ ( 𝑎 ∩ 𝑏 ) ) / ( 𝑝 ‘ 𝑏 ) ) ) |
| 15 |
1 2 14
|
cmpt |
⊢ ( 𝑝 ∈ Prob ↦ ( 𝑎 ∈ dom 𝑝 , 𝑏 ∈ dom 𝑝 ↦ ( ( 𝑝 ‘ ( 𝑎 ∩ 𝑏 ) ) / ( 𝑝 ‘ 𝑏 ) ) ) ) |
| 16 |
0 15
|
wceq |
⊢ cprob = ( 𝑝 ∈ Prob ↦ ( 𝑎 ∈ dom 𝑝 , 𝑏 ∈ dom 𝑝 ↦ ( ( 𝑝 ‘ ( 𝑎 ∩ 𝑏 ) ) / ( 𝑝 ‘ 𝑏 ) ) ) ) |