Metamath Proof Explorer


Definition df-cndprob

Description: Define the conditional probability. (Contributed by Thierry Arnoux, 14-Sep-2016) (Revised by Thierry Arnoux, 21-Jan-2017)

Ref Expression
Assertion df-cndprob cprob = ( 𝑝 ∈ Prob ↦ ( 𝑎 ∈ dom 𝑝 , 𝑏 ∈ dom 𝑝 ↦ ( ( 𝑝 ‘ ( 𝑎𝑏 ) ) / ( 𝑝𝑏 ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccprob cprob
1 vp 𝑝
2 cprb Prob
3 va 𝑎
4 1 cv 𝑝
5 4 cdm dom 𝑝
6 vb 𝑏
7 3 cv 𝑎
8 6 cv 𝑏
9 7 8 cin ( 𝑎𝑏 )
10 9 4 cfv ( 𝑝 ‘ ( 𝑎𝑏 ) )
11 cdiv /
12 8 4 cfv ( 𝑝𝑏 )
13 10 12 11 co ( ( 𝑝 ‘ ( 𝑎𝑏 ) ) / ( 𝑝𝑏 ) )
14 3 6 5 5 13 cmpo ( 𝑎 ∈ dom 𝑝 , 𝑏 ∈ dom 𝑝 ↦ ( ( 𝑝 ‘ ( 𝑎𝑏 ) ) / ( 𝑝𝑏 ) ) )
15 1 2 14 cmpt ( 𝑝 ∈ Prob ↦ ( 𝑎 ∈ dom 𝑝 , 𝑏 ∈ dom 𝑝 ↦ ( ( 𝑝 ‘ ( 𝑎𝑏 ) ) / ( 𝑝𝑏 ) ) ) )
16 0 15 wceq cprob = ( 𝑝 ∈ Prob ↦ ( 𝑎 ∈ dom 𝑝 , 𝑏 ∈ dom 𝑝 ↦ ( ( 𝑝 ‘ ( 𝑎𝑏 ) ) / ( 𝑝𝑏 ) ) ) )