Step |
Hyp |
Ref |
Expression |
0 |
|
ccprob |
⊢ cprob |
1 |
|
vp |
⊢ 𝑝 |
2 |
|
cprb |
⊢ Prob |
3 |
|
va |
⊢ 𝑎 |
4 |
1
|
cv |
⊢ 𝑝 |
5 |
4
|
cdm |
⊢ dom 𝑝 |
6 |
|
vb |
⊢ 𝑏 |
7 |
3
|
cv |
⊢ 𝑎 |
8 |
6
|
cv |
⊢ 𝑏 |
9 |
7 8
|
cin |
⊢ ( 𝑎 ∩ 𝑏 ) |
10 |
9 4
|
cfv |
⊢ ( 𝑝 ‘ ( 𝑎 ∩ 𝑏 ) ) |
11 |
|
cdiv |
⊢ / |
12 |
8 4
|
cfv |
⊢ ( 𝑝 ‘ 𝑏 ) |
13 |
10 12 11
|
co |
⊢ ( ( 𝑝 ‘ ( 𝑎 ∩ 𝑏 ) ) / ( 𝑝 ‘ 𝑏 ) ) |
14 |
3 6 5 5 13
|
cmpo |
⊢ ( 𝑎 ∈ dom 𝑝 , 𝑏 ∈ dom 𝑝 ↦ ( ( 𝑝 ‘ ( 𝑎 ∩ 𝑏 ) ) / ( 𝑝 ‘ 𝑏 ) ) ) |
15 |
1 2 14
|
cmpt |
⊢ ( 𝑝 ∈ Prob ↦ ( 𝑎 ∈ dom 𝑝 , 𝑏 ∈ dom 𝑝 ↦ ( ( 𝑝 ‘ ( 𝑎 ∩ 𝑏 ) ) / ( 𝑝 ‘ 𝑏 ) ) ) ) |
16 |
0 15
|
wceq |
⊢ cprob = ( 𝑝 ∈ Prob ↦ ( 𝑎 ∈ dom 𝑝 , 𝑏 ∈ dom 𝑝 ↦ ( ( 𝑝 ‘ ( 𝑎 ∩ 𝑏 ) ) / ( 𝑝 ‘ 𝑏 ) ) ) ) |