| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elunitrn |
⊢ ( 𝐴 ∈ ( 0 [,] 1 ) → 𝐴 ∈ ℝ ) |
| 2 |
1
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ( 0 [,] 1 ) ∧ 𝐵 ∈ ( 0 [,] 1 ) ∧ 𝐵 ≠ 0 ) → 𝐴 ∈ ℝ ) |
| 3 |
|
elunitrn |
⊢ ( 𝐵 ∈ ( 0 [,] 1 ) → 𝐵 ∈ ℝ ) |
| 4 |
3
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ( 0 [,] 1 ) ∧ 𝐵 ∈ ( 0 [,] 1 ) ∧ 𝐵 ≠ 0 ) → 𝐵 ∈ ℝ ) |
| 5 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ( 0 [,] 1 ) ∧ 𝐵 ∈ ( 0 [,] 1 ) ∧ 𝐵 ≠ 0 ) → 𝐵 ≠ 0 ) |
| 6 |
2 4 5
|
redivcld |
⊢ ( ( 𝐴 ∈ ( 0 [,] 1 ) ∧ 𝐵 ∈ ( 0 [,] 1 ) ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) ∈ ℝ ) |
| 7 |
6
|
adantr |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] 1 ) ∧ 𝐵 ∈ ( 0 [,] 1 ) ∧ 𝐵 ≠ 0 ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 / 𝐵 ) ∈ ℝ ) |
| 8 |
|
elunitge0 |
⊢ ( 𝐴 ∈ ( 0 [,] 1 ) → 0 ≤ 𝐴 ) |
| 9 |
8
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ( 0 [,] 1 ) ∧ 𝐵 ∈ ( 0 [,] 1 ) ∧ 𝐵 ≠ 0 ) → 0 ≤ 𝐴 ) |
| 10 |
|
elunitge0 |
⊢ ( 𝐵 ∈ ( 0 [,] 1 ) → 0 ≤ 𝐵 ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝐵 ∈ ( 0 [,] 1 ) ∧ 𝐵 ≠ 0 ) → 0 ≤ 𝐵 ) |
| 12 |
|
0re |
⊢ 0 ∈ ℝ |
| 13 |
|
ltlen |
⊢ ( ( 0 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 < 𝐵 ↔ ( 0 ≤ 𝐵 ∧ 𝐵 ≠ 0 ) ) ) |
| 14 |
12 3 13
|
sylancr |
⊢ ( 𝐵 ∈ ( 0 [,] 1 ) → ( 0 < 𝐵 ↔ ( 0 ≤ 𝐵 ∧ 𝐵 ≠ 0 ) ) ) |
| 15 |
14
|
biimpar |
⊢ ( ( 𝐵 ∈ ( 0 [,] 1 ) ∧ ( 0 ≤ 𝐵 ∧ 𝐵 ≠ 0 ) ) → 0 < 𝐵 ) |
| 16 |
15
|
3impb |
⊢ ( ( 𝐵 ∈ ( 0 [,] 1 ) ∧ 0 ≤ 𝐵 ∧ 𝐵 ≠ 0 ) → 0 < 𝐵 ) |
| 17 |
16
|
3com23 |
⊢ ( ( 𝐵 ∈ ( 0 [,] 1 ) ∧ 𝐵 ≠ 0 ∧ 0 ≤ 𝐵 ) → 0 < 𝐵 ) |
| 18 |
11 17
|
mpd3an3 |
⊢ ( ( 𝐵 ∈ ( 0 [,] 1 ) ∧ 𝐵 ≠ 0 ) → 0 < 𝐵 ) |
| 19 |
18
|
3adant1 |
⊢ ( ( 𝐴 ∈ ( 0 [,] 1 ) ∧ 𝐵 ∈ ( 0 [,] 1 ) ∧ 𝐵 ≠ 0 ) → 0 < 𝐵 ) |
| 20 |
|
divge0 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 0 ≤ ( 𝐴 / 𝐵 ) ) |
| 21 |
2 9 4 19 20
|
syl22anc |
⊢ ( ( 𝐴 ∈ ( 0 [,] 1 ) ∧ 𝐵 ∈ ( 0 [,] 1 ) ∧ 𝐵 ≠ 0 ) → 0 ≤ ( 𝐴 / 𝐵 ) ) |
| 22 |
21
|
adantr |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] 1 ) ∧ 𝐵 ∈ ( 0 [,] 1 ) ∧ 𝐵 ≠ 0 ) ∧ 𝐴 ≤ 𝐵 ) → 0 ≤ ( 𝐴 / 𝐵 ) ) |
| 23 |
|
1red |
⊢ ( ( 𝐴 ∈ ( 0 [,] 1 ) ∧ 𝐵 ∈ ( 0 [,] 1 ) ∧ 𝐵 ≠ 0 ) → 1 ∈ ℝ ) |
| 24 |
|
ledivmul |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ( 𝐴 / 𝐵 ) ≤ 1 ↔ 𝐴 ≤ ( 𝐵 · 1 ) ) ) |
| 25 |
2 23 4 19 24
|
syl112anc |
⊢ ( ( 𝐴 ∈ ( 0 [,] 1 ) ∧ 𝐵 ∈ ( 0 [,] 1 ) ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 / 𝐵 ) ≤ 1 ↔ 𝐴 ≤ ( 𝐵 · 1 ) ) ) |
| 26 |
|
ax-1rid |
⊢ ( 𝐵 ∈ ℝ → ( 𝐵 · 1 ) = 𝐵 ) |
| 27 |
26
|
breq2d |
⊢ ( 𝐵 ∈ ℝ → ( 𝐴 ≤ ( 𝐵 · 1 ) ↔ 𝐴 ≤ 𝐵 ) ) |
| 28 |
4 27
|
syl |
⊢ ( ( 𝐴 ∈ ( 0 [,] 1 ) ∧ 𝐵 ∈ ( 0 [,] 1 ) ∧ 𝐵 ≠ 0 ) → ( 𝐴 ≤ ( 𝐵 · 1 ) ↔ 𝐴 ≤ 𝐵 ) ) |
| 29 |
25 28
|
bitr2d |
⊢ ( ( 𝐴 ∈ ( 0 [,] 1 ) ∧ 𝐵 ∈ ( 0 [,] 1 ) ∧ 𝐵 ≠ 0 ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 / 𝐵 ) ≤ 1 ) ) |
| 30 |
29
|
biimpa |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] 1 ) ∧ 𝐵 ∈ ( 0 [,] 1 ) ∧ 𝐵 ≠ 0 ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 / 𝐵 ) ≤ 1 ) |
| 31 |
7 22 30
|
3jca |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] 1 ) ∧ 𝐵 ∈ ( 0 [,] 1 ) ∧ 𝐵 ≠ 0 ) ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 / 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 / 𝐵 ) ∧ ( 𝐴 / 𝐵 ) ≤ 1 ) ) |
| 32 |
31
|
ex |
⊢ ( ( 𝐴 ∈ ( 0 [,] 1 ) ∧ 𝐵 ∈ ( 0 [,] 1 ) ∧ 𝐵 ≠ 0 ) → ( 𝐴 ≤ 𝐵 → ( ( 𝐴 / 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 / 𝐵 ) ∧ ( 𝐴 / 𝐵 ) ≤ 1 ) ) ) |
| 33 |
|
simp3 |
⊢ ( ( ( 𝐴 / 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 / 𝐵 ) ∧ ( 𝐴 / 𝐵 ) ≤ 1 ) → ( 𝐴 / 𝐵 ) ≤ 1 ) |
| 34 |
33 29
|
imbitrrid |
⊢ ( ( 𝐴 ∈ ( 0 [,] 1 ) ∧ 𝐵 ∈ ( 0 [,] 1 ) ∧ 𝐵 ≠ 0 ) → ( ( ( 𝐴 / 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 / 𝐵 ) ∧ ( 𝐴 / 𝐵 ) ≤ 1 ) → 𝐴 ≤ 𝐵 ) ) |
| 35 |
32 34
|
impbid |
⊢ ( ( 𝐴 ∈ ( 0 [,] 1 ) ∧ 𝐵 ∈ ( 0 [,] 1 ) ∧ 𝐵 ≠ 0 ) → ( 𝐴 ≤ 𝐵 ↔ ( ( 𝐴 / 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 / 𝐵 ) ∧ ( 𝐴 / 𝐵 ) ≤ 1 ) ) ) |
| 36 |
|
elicc01 |
⊢ ( ( 𝐴 / 𝐵 ) ∈ ( 0 [,] 1 ) ↔ ( ( 𝐴 / 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 / 𝐵 ) ∧ ( 𝐴 / 𝐵 ) ≤ 1 ) ) |
| 37 |
35 36
|
bitr4di |
⊢ ( ( 𝐴 ∈ ( 0 [,] 1 ) ∧ 𝐵 ∈ ( 0 [,] 1 ) ∧ 𝐵 ≠ 0 ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 / 𝐵 ) ∈ ( 0 [,] 1 ) ) ) |