| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unitsscn |
|- ( 0 [,] 1 ) C_ CC |
| 2 |
|
cndprob01 |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ ( P ` B ) =/= 0 ) -> ( ( cprob ` P ) ` <. A , B >. ) e. ( 0 [,] 1 ) ) |
| 3 |
2
|
3adant2 |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ ( P ` A ) =/= 0 /\ ( P ` B ) =/= 0 ) -> ( ( cprob ` P ) ` <. A , B >. ) e. ( 0 [,] 1 ) ) |
| 4 |
1 3
|
sselid |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ ( P ` A ) =/= 0 /\ ( P ` B ) =/= 0 ) -> ( ( cprob ` P ) ` <. A , B >. ) e. CC ) |
| 5 |
|
simp11 |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ ( P ` A ) =/= 0 /\ ( P ` B ) =/= 0 ) -> P e. Prob ) |
| 6 |
|
simp13 |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ ( P ` A ) =/= 0 /\ ( P ` B ) =/= 0 ) -> B e. dom P ) |
| 7 |
|
prob01 |
|- ( ( P e. Prob /\ B e. dom P ) -> ( P ` B ) e. ( 0 [,] 1 ) ) |
| 8 |
5 6 7
|
syl2anc |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ ( P ` A ) =/= 0 /\ ( P ` B ) =/= 0 ) -> ( P ` B ) e. ( 0 [,] 1 ) ) |
| 9 |
1 8
|
sselid |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ ( P ` A ) =/= 0 /\ ( P ` B ) =/= 0 ) -> ( P ` B ) e. CC ) |
| 10 |
|
simp3 |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ ( P ` A ) =/= 0 /\ ( P ` B ) =/= 0 ) -> ( P ` B ) =/= 0 ) |
| 11 |
4 9 10
|
divcan4d |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ ( P ` A ) =/= 0 /\ ( P ` B ) =/= 0 ) -> ( ( ( ( cprob ` P ) ` <. A , B >. ) x. ( P ` B ) ) / ( P ` B ) ) = ( ( cprob ` P ) ` <. A , B >. ) ) |
| 12 |
|
incom |
|- ( A i^i B ) = ( B i^i A ) |
| 13 |
12
|
fveq2i |
|- ( P ` ( A i^i B ) ) = ( P ` ( B i^i A ) ) |
| 14 |
|
cndprobin |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ ( P ` B ) =/= 0 ) -> ( ( ( cprob ` P ) ` <. A , B >. ) x. ( P ` B ) ) = ( P ` ( A i^i B ) ) ) |
| 15 |
14
|
3adant2 |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ ( P ` A ) =/= 0 /\ ( P ` B ) =/= 0 ) -> ( ( ( cprob ` P ) ` <. A , B >. ) x. ( P ` B ) ) = ( P ` ( A i^i B ) ) ) |
| 16 |
|
simp12 |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ ( P ` A ) =/= 0 /\ ( P ` B ) =/= 0 ) -> A e. dom P ) |
| 17 |
|
simp2 |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ ( P ` A ) =/= 0 /\ ( P ` B ) =/= 0 ) -> ( P ` A ) =/= 0 ) |
| 18 |
|
cndprobin |
|- ( ( ( P e. Prob /\ B e. dom P /\ A e. dom P ) /\ ( P ` A ) =/= 0 ) -> ( ( ( cprob ` P ) ` <. B , A >. ) x. ( P ` A ) ) = ( P ` ( B i^i A ) ) ) |
| 19 |
5 6 16 17 18
|
syl31anc |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ ( P ` A ) =/= 0 /\ ( P ` B ) =/= 0 ) -> ( ( ( cprob ` P ) ` <. B , A >. ) x. ( P ` A ) ) = ( P ` ( B i^i A ) ) ) |
| 20 |
13 15 19
|
3eqtr4a |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ ( P ` A ) =/= 0 /\ ( P ` B ) =/= 0 ) -> ( ( ( cprob ` P ) ` <. A , B >. ) x. ( P ` B ) ) = ( ( ( cprob ` P ) ` <. B , A >. ) x. ( P ` A ) ) ) |
| 21 |
20
|
oveq1d |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ ( P ` A ) =/= 0 /\ ( P ` B ) =/= 0 ) -> ( ( ( ( cprob ` P ) ` <. A , B >. ) x. ( P ` B ) ) / ( P ` B ) ) = ( ( ( ( cprob ` P ) ` <. B , A >. ) x. ( P ` A ) ) / ( P ` B ) ) ) |
| 22 |
11 21
|
eqtr3d |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ ( P ` A ) =/= 0 /\ ( P ` B ) =/= 0 ) -> ( ( cprob ` P ) ` <. A , B >. ) = ( ( ( ( cprob ` P ) ` <. B , A >. ) x. ( P ` A ) ) / ( P ` B ) ) ) |