| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
|
| 2 |
|
nuleldmp |
|
| 3 |
1 2
|
syl |
|
| 4 |
|
simp2 |
|
| 5 |
|
cndprobval |
|
| 6 |
1 3 4 5
|
syl3anc |
|
| 7 |
|
0in |
|
| 8 |
7
|
fveq2i |
|
| 9 |
8
|
oveq1i |
|
| 10 |
9
|
a1i |
|
| 11 |
|
probnul |
|
| 12 |
1 11
|
syl |
|
| 13 |
12
|
oveq1d |
|
| 14 |
|
prob01 |
|
| 15 |
14
|
3adant3 |
|
| 16 |
|
elunitcn |
|
| 17 |
15 16
|
syl |
|
| 18 |
|
simp3 |
|
| 19 |
17 18
|
div0d |
|
| 20 |
10 13 19
|
3eqtrd |
|
| 21 |
6 20
|
eqtrd |
|