Metamath Proof Explorer


Theorem cndprobnul

Description: The conditional probability given empty event is zero. (Contributed by Thierry Arnoux, 20-Dec-2016) (Revised by Thierry Arnoux, 21-Jan-2017)

Ref Expression
Assertion cndprobnul PProbAdomPPA0cProbPA=0

Proof

Step Hyp Ref Expression
1 simp1 PProbAdomPPA0PProb
2 nuleldmp PProbdomP
3 1 2 syl PProbAdomPPA0domP
4 simp2 PProbAdomPPA0AdomP
5 cndprobval PProbdomPAdomPcProbPA=PAPA
6 1 3 4 5 syl3anc PProbAdomPPA0cProbPA=PAPA
7 0in A=
8 7 fveq2i PA=P
9 8 oveq1i PAPA=PPA
10 9 a1i PProbAdomPPA0PAPA=PPA
11 probnul PProbP=0
12 1 11 syl PProbAdomPPA0P=0
13 12 oveq1d PProbAdomPPA0PPA=0PA
14 prob01 PProbAdomPPA01
15 14 3adant3 PProbAdomPPA0PA01
16 elunitcn PA01PA
17 15 16 syl PProbAdomPPA0PA
18 simp3 PProbAdomPPA0PA0
19 17 18 div0d PProbAdomPPA00PA=0
20 10 13 19 3eqtrd PProbAdomPPA0PAPA=0
21 6 20 eqtrd PProbAdomPPA0cProbPA=0