Metamath Proof Explorer


Theorem cndprobnul

Description: The conditional probability given empty event is zero. (Contributed by Thierry Arnoux, 20-Dec-2016) (Revised by Thierry Arnoux, 21-Jan-2017)

Ref Expression
Assertion cndprobnul P Prob A dom P P A 0 cProb P A = 0

Proof

Step Hyp Ref Expression
1 simp1 P Prob A dom P P A 0 P Prob
2 nuleldmp P Prob dom P
3 1 2 syl P Prob A dom P P A 0 dom P
4 simp2 P Prob A dom P P A 0 A dom P
5 cndprobval P Prob dom P A dom P cProb P A = P A P A
6 1 3 4 5 syl3anc P Prob A dom P P A 0 cProb P A = P A P A
7 0in A =
8 7 fveq2i P A = P
9 8 oveq1i P A P A = P P A
10 9 a1i P Prob A dom P P A 0 P A P A = P P A
11 probnul P Prob P = 0
12 1 11 syl P Prob A dom P P A 0 P = 0
13 12 oveq1d P Prob A dom P P A 0 P P A = 0 P A
14 prob01 P Prob A dom P P A 0 1
15 14 3adant3 P Prob A dom P P A 0 P A 0 1
16 elunitcn P A 0 1 P A
17 15 16 syl P Prob A dom P P A 0 P A
18 simp3 P Prob A dom P P A 0 P A 0
19 17 18 div0d P Prob A dom P P A 0 0 P A = 0
20 10 13 19 3eqtrd P Prob A dom P P A 0 P A P A = 0
21 6 20 eqtrd P Prob A dom P P A 0 cProb P A = 0