| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ ( 𝑃 ‘ 𝐴 ) ≠ 0 ) → 𝑃 ∈ Prob ) |
| 2 |
|
nuleldmp |
⊢ ( 𝑃 ∈ Prob → ∅ ∈ dom 𝑃 ) |
| 3 |
1 2
|
syl |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ ( 𝑃 ‘ 𝐴 ) ≠ 0 ) → ∅ ∈ dom 𝑃 ) |
| 4 |
|
simp2 |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ ( 𝑃 ‘ 𝐴 ) ≠ 0 ) → 𝐴 ∈ dom 𝑃 ) |
| 5 |
|
cndprobval |
⊢ ( ( 𝑃 ∈ Prob ∧ ∅ ∈ dom 𝑃 ∧ 𝐴 ∈ dom 𝑃 ) → ( ( cprob ‘ 𝑃 ) ‘ 〈 ∅ , 𝐴 〉 ) = ( ( 𝑃 ‘ ( ∅ ∩ 𝐴 ) ) / ( 𝑃 ‘ 𝐴 ) ) ) |
| 6 |
1 3 4 5
|
syl3anc |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ ( 𝑃 ‘ 𝐴 ) ≠ 0 ) → ( ( cprob ‘ 𝑃 ) ‘ 〈 ∅ , 𝐴 〉 ) = ( ( 𝑃 ‘ ( ∅ ∩ 𝐴 ) ) / ( 𝑃 ‘ 𝐴 ) ) ) |
| 7 |
|
0in |
⊢ ( ∅ ∩ 𝐴 ) = ∅ |
| 8 |
7
|
fveq2i |
⊢ ( 𝑃 ‘ ( ∅ ∩ 𝐴 ) ) = ( 𝑃 ‘ ∅ ) |
| 9 |
8
|
oveq1i |
⊢ ( ( 𝑃 ‘ ( ∅ ∩ 𝐴 ) ) / ( 𝑃 ‘ 𝐴 ) ) = ( ( 𝑃 ‘ ∅ ) / ( 𝑃 ‘ 𝐴 ) ) |
| 10 |
9
|
a1i |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ ( 𝑃 ‘ 𝐴 ) ≠ 0 ) → ( ( 𝑃 ‘ ( ∅ ∩ 𝐴 ) ) / ( 𝑃 ‘ 𝐴 ) ) = ( ( 𝑃 ‘ ∅ ) / ( 𝑃 ‘ 𝐴 ) ) ) |
| 11 |
|
probnul |
⊢ ( 𝑃 ∈ Prob → ( 𝑃 ‘ ∅ ) = 0 ) |
| 12 |
1 11
|
syl |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ ( 𝑃 ‘ 𝐴 ) ≠ 0 ) → ( 𝑃 ‘ ∅ ) = 0 ) |
| 13 |
12
|
oveq1d |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ ( 𝑃 ‘ 𝐴 ) ≠ 0 ) → ( ( 𝑃 ‘ ∅ ) / ( 𝑃 ‘ 𝐴 ) ) = ( 0 / ( 𝑃 ‘ 𝐴 ) ) ) |
| 14 |
|
prob01 |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ) → ( 𝑃 ‘ 𝐴 ) ∈ ( 0 [,] 1 ) ) |
| 15 |
14
|
3adant3 |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ ( 𝑃 ‘ 𝐴 ) ≠ 0 ) → ( 𝑃 ‘ 𝐴 ) ∈ ( 0 [,] 1 ) ) |
| 16 |
|
elunitcn |
⊢ ( ( 𝑃 ‘ 𝐴 ) ∈ ( 0 [,] 1 ) → ( 𝑃 ‘ 𝐴 ) ∈ ℂ ) |
| 17 |
15 16
|
syl |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ ( 𝑃 ‘ 𝐴 ) ≠ 0 ) → ( 𝑃 ‘ 𝐴 ) ∈ ℂ ) |
| 18 |
|
simp3 |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ ( 𝑃 ‘ 𝐴 ) ≠ 0 ) → ( 𝑃 ‘ 𝐴 ) ≠ 0 ) |
| 19 |
17 18
|
div0d |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ ( 𝑃 ‘ 𝐴 ) ≠ 0 ) → ( 0 / ( 𝑃 ‘ 𝐴 ) ) = 0 ) |
| 20 |
10 13 19
|
3eqtrd |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ ( 𝑃 ‘ 𝐴 ) ≠ 0 ) → ( ( 𝑃 ‘ ( ∅ ∩ 𝐴 ) ) / ( 𝑃 ‘ 𝐴 ) ) = 0 ) |
| 21 |
6 20
|
eqtrd |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ ( 𝑃 ‘ 𝐴 ) ≠ 0 ) → ( ( cprob ‘ 𝑃 ) ‘ 〈 ∅ , 𝐴 〉 ) = 0 ) |