Metamath Proof Explorer


Definition df-cosh

Description: Define the hyperbolic cosine function (cosh). We define it this way for cmpt , which requires the form ( x e. A |-> B ) . (Contributed by David A. Wheeler, 10-May-2015)

Ref Expression
Assertion df-cosh cosh=xcosix

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccosh classcosh
1 vx setvarx
2 cc class
3 ccos classcos
4 ci classi
5 cmul class×
6 1 cv setvarx
7 4 6 5 co classix
8 7 3 cfv classcosix
9 1 2 8 cmpt classxcosix
10 0 9 wceq wffcosh=xcosix