Metamath Proof Explorer


Definition df-cosh

Description: Define the hyperbolic cosine function (cosh). We define it this way for cmpt , which requires the form ( x e. A |-> B ) . (Contributed by David A. Wheeler, 10-May-2015)

Ref Expression
Assertion df-cosh cosh = x cos i x

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccosh class cosh
1 vx setvar x
2 cc class
3 ccos class cos
4 ci class i
5 cmul class ×
6 1 cv setvar x
7 4 6 5 co class i x
8 7 3 cfv class cos i x
9 1 2 8 cmpt class x cos i x
10 0 9 wceq wff cosh = x cos i x