Metamath Proof Explorer


Definition df-cpn

Description: Define the set of n -times continuously differentiable functions. (Contributed by Stefan O'Rear, 15-Nov-2014)

Ref Expression
Assertion df-cpn Cn=s𝒫x0f𝑝𝑚s|sDnfx:domfcn

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccpn classCn
1 vs setvars
2 cc class
3 2 cpw class𝒫
4 vx setvarx
5 cn0 class0
6 vf setvarf
7 cpm class𝑝𝑚
8 1 cv setvars
9 2 8 7 co class𝑝𝑚s
10 cdvn classDn
11 6 cv setvarf
12 8 11 10 co classsDnf
13 4 cv setvarx
14 13 12 cfv classsDnfx
15 11 cdm classdomf
16 ccncf classcn
17 15 2 16 co classdomfcn
18 14 17 wcel wffsDnfx:domfcn
19 18 6 9 crab classf𝑝𝑚s|sDnfx:domfcn
20 4 5 19 cmpt classx0f𝑝𝑚s|sDnfx:domfcn
21 1 3 20 cmpt classs𝒫x0f𝑝𝑚s|sDnfx:domfcn
22 0 21 wceq wffCn=s𝒫x0f𝑝𝑚s|sDnfx:domfcn