Metamath Proof Explorer


Definition df-cup

Description: Define the little cup function. See brcup for its value. (Contributed by Scott Fenton, 14-Apr-2014)

Ref Expression
Assertion df-cup 𝖢𝗎𝗉 = V × V × V ran V E 1 st -1 E 2 nd -1 E V

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccup class 𝖢𝗎𝗉
1 cvv class V
2 1 1 cxp class V × V
3 2 1 cxp class V × V × V
4 cep class E
5 1 4 ctxp class V E
6 c1st class 1 st
7 6 ccnv class 1 st -1
8 7 4 ccom class 1 st -1 E
9 c2nd class 2 nd
10 9 ccnv class 2 nd -1
11 10 4 ccom class 2 nd -1 E
12 8 11 cun class 1 st -1 E 2 nd -1 E
13 12 1 ctxp class 1 st -1 E 2 nd -1 E V
14 5 13 csymdif class V E 1 st -1 E 2 nd -1 E V
15 14 crn class ran V E 1 st -1 E 2 nd -1 E V
16 3 15 cdif class V × V × V ran V E 1 st -1 E 2 nd -1 E V
17 0 16 wceq wff 𝖢𝗎𝗉 = V × V × V ran V E 1 st -1 E 2 nd -1 E V