Metamath Proof Explorer


Definition df-cup

Description: Define the little cup function. See brcup for its value. (Contributed by Scott Fenton, 14-Apr-2014)

Ref Expression
Assertion df-cup 𝖢𝗎𝗉=V×V×VranVE1st-1E2nd-1EV

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccup class𝖢𝗎𝗉
1 cvv classV
2 1 1 cxp classV×V
3 2 1 cxp classV×V×V
4 cep classE
5 1 4 ctxp classVE
6 c1st class1st
7 6 ccnv class1st-1
8 7 4 ccom class1st-1E
9 c2nd class2nd
10 9 ccnv class2nd-1
11 10 4 ccom class2nd-1E
12 8 11 cun class1st-1E2nd-1E
13 12 1 ctxp class1st-1E2nd-1EV
14 5 13 csymdif classVE1st-1E2nd-1EV
15 14 crn classranVE1st-1E2nd-1EV
16 3 15 cdif classV×V×VranVE1st-1E2nd-1EV
17 0 16 wceq wff𝖢𝗎𝗉=V×V×VranVE1st-1E2nd-1EV