Metamath Proof Explorer


Definition df-evlf

Description: Define the evaluation functor, which is the extension of the evaluation map f , x |-> ( fx ) of functors, to a functor ( C --> D ) X. C --> D . (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Assertion df-evlf evalF=cCat,dCatfcFuncd,xBasec1stfxxcFuncd×Basec,ycFuncd×Basec1stx/m1sty/namcNatdn,g2ndxHomc2ndya2ndy1stm2ndx1stm2ndycompd1stn2ndy2ndx2ndm2ndyg

Detailed syntax breakdown

Step Hyp Ref Expression
0 cevlf classevalF
1 vc setvarc
2 ccat classCat
3 vd setvard
4 vf setvarf
5 1 cv setvarc
6 cfunc classFunc
7 3 cv setvard
8 5 7 6 co classcFuncd
9 vx setvarx
10 cbs classBase
11 5 10 cfv classBasec
12 c1st class1st
13 4 cv setvarf
14 13 12 cfv class1stf
15 9 cv setvarx
16 15 14 cfv class1stfx
17 4 9 8 11 16 cmpo classfcFuncd,xBasec1stfx
18 8 11 cxp classcFuncd×Basec
19 vy setvary
20 15 12 cfv class1stx
21 vm setvarm
22 19 cv setvary
23 22 12 cfv class1sty
24 vn setvarn
25 va setvara
26 21 cv setvarm
27 cnat classNat
28 5 7 27 co classcNatd
29 24 cv setvarn
30 26 29 28 co classmcNatdn
31 vg setvarg
32 c2nd class2nd
33 15 32 cfv class2ndx
34 chom classHom
35 5 34 cfv classHomc
36 22 32 cfv class2ndy
37 33 36 35 co class2ndxHomc2ndy
38 25 cv setvara
39 36 38 cfv classa2ndy
40 26 12 cfv class1stm
41 33 40 cfv class1stm2ndx
42 36 40 cfv class1stm2ndy
43 41 42 cop class1stm2ndx1stm2ndy
44 cco classcomp
45 7 44 cfv classcompd
46 29 12 cfv class1stn
47 36 46 cfv class1stn2ndy
48 43 47 45 co class1stm2ndx1stm2ndycompd1stn2ndy
49 26 32 cfv class2ndm
50 33 36 49 co class2ndx2ndm2ndy
51 31 cv setvarg
52 51 50 cfv class2ndx2ndm2ndyg
53 39 52 48 co classa2ndy1stm2ndx1stm2ndycompd1stn2ndy2ndx2ndm2ndyg
54 25 31 30 37 53 cmpo classamcNatdn,g2ndxHomc2ndya2ndy1stm2ndx1stm2ndycompd1stn2ndy2ndx2ndm2ndyg
55 24 23 54 csb class1sty/namcNatdn,g2ndxHomc2ndya2ndy1stm2ndx1stm2ndycompd1stn2ndy2ndx2ndm2ndyg
56 21 20 55 csb class1stx/m1sty/namcNatdn,g2ndxHomc2ndya2ndy1stm2ndx1stm2ndycompd1stn2ndy2ndx2ndm2ndyg
57 9 19 18 18 56 cmpo classxcFuncd×Basec,ycFuncd×Basec1stx/m1sty/namcNatdn,g2ndxHomc2ndya2ndy1stm2ndx1stm2ndycompd1stn2ndy2ndx2ndm2ndyg
58 17 57 cop classfcFuncd,xBasec1stfxxcFuncd×Basec,ycFuncd×Basec1stx/m1sty/namcNatdn,g2ndxHomc2ndya2ndy1stm2ndx1stm2ndycompd1stn2ndy2ndx2ndm2ndyg
59 1 3 2 2 58 cmpo classcCat,dCatfcFuncd,xBasec1stfxxcFuncd×Basec,ycFuncd×Basec1stx/m1sty/namcNatdn,g2ndxHomc2ndya2ndy1stm2ndx1stm2ndycompd1stn2ndy2ndx2ndm2ndyg
60 0 59 wceq wffevalF=cCat,dCatfcFuncd,xBasec1stfxxcFuncd×Basec,ycFuncd×Basec1stx/m1sty/namcNatdn,g2ndxHomc2ndya2ndy1stm2ndx1stm2ndycompd1stn2ndy2ndx2ndm2ndyg