Metamath Proof Explorer


Definition df-evlf

Description: Define the evaluation functor, which is the extension of the evaluation map f , x |-> ( fx ) of functors, to a functor ( C --> D ) X. C --> D . (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Assertion df-evlf eval F = c Cat , d Cat f c Func d , x Base c 1 st f x x c Func d × Base c , y c Func d × Base c 1 st x / m 1 st y / n a m c Nat d n , g 2 nd x Hom c 2 nd y a 2 nd y 1 st m 2 nd x 1 st m 2 nd y comp d 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g

Detailed syntax breakdown

Step Hyp Ref Expression
0 cevlf class eval F
1 vc setvar c
2 ccat class Cat
3 vd setvar d
4 vf setvar f
5 1 cv setvar c
6 cfunc class Func
7 3 cv setvar d
8 5 7 6 co class c Func d
9 vx setvar x
10 cbs class Base
11 5 10 cfv class Base c
12 c1st class 1 st
13 4 cv setvar f
14 13 12 cfv class 1 st f
15 9 cv setvar x
16 15 14 cfv class 1 st f x
17 4 9 8 11 16 cmpo class f c Func d , x Base c 1 st f x
18 8 11 cxp class c Func d × Base c
19 vy setvar y
20 15 12 cfv class 1 st x
21 vm setvar m
22 19 cv setvar y
23 22 12 cfv class 1 st y
24 vn setvar n
25 va setvar a
26 21 cv setvar m
27 cnat class Nat
28 5 7 27 co class c Nat d
29 24 cv setvar n
30 26 29 28 co class m c Nat d n
31 vg setvar g
32 c2nd class 2 nd
33 15 32 cfv class 2 nd x
34 chom class Hom
35 5 34 cfv class Hom c
36 22 32 cfv class 2 nd y
37 33 36 35 co class 2 nd x Hom c 2 nd y
38 25 cv setvar a
39 36 38 cfv class a 2 nd y
40 26 12 cfv class 1 st m
41 33 40 cfv class 1 st m 2 nd x
42 36 40 cfv class 1 st m 2 nd y
43 41 42 cop class 1 st m 2 nd x 1 st m 2 nd y
44 cco class comp
45 7 44 cfv class comp d
46 29 12 cfv class 1 st n
47 36 46 cfv class 1 st n 2 nd y
48 43 47 45 co class 1 st m 2 nd x 1 st m 2 nd y comp d 1 st n 2 nd y
49 26 32 cfv class 2 nd m
50 33 36 49 co class 2 nd x 2 nd m 2 nd y
51 31 cv setvar g
52 51 50 cfv class 2 nd x 2 nd m 2 nd y g
53 39 52 48 co class a 2 nd y 1 st m 2 nd x 1 st m 2 nd y comp d 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g
54 25 31 30 37 53 cmpo class a m c Nat d n , g 2 nd x Hom c 2 nd y a 2 nd y 1 st m 2 nd x 1 st m 2 nd y comp d 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g
55 24 23 54 csb class 1 st y / n a m c Nat d n , g 2 nd x Hom c 2 nd y a 2 nd y 1 st m 2 nd x 1 st m 2 nd y comp d 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g
56 21 20 55 csb class 1 st x / m 1 st y / n a m c Nat d n , g 2 nd x Hom c 2 nd y a 2 nd y 1 st m 2 nd x 1 st m 2 nd y comp d 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g
57 9 19 18 18 56 cmpo class x c Func d × Base c , y c Func d × Base c 1 st x / m 1 st y / n a m c Nat d n , g 2 nd x Hom c 2 nd y a 2 nd y 1 st m 2 nd x 1 st m 2 nd y comp d 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g
58 17 57 cop class f c Func d , x Base c 1 st f x x c Func d × Base c , y c Func d × Base c 1 st x / m 1 st y / n a m c Nat d n , g 2 nd x Hom c 2 nd y a 2 nd y 1 st m 2 nd x 1 st m 2 nd y comp d 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g
59 1 3 2 2 58 cmpo class c Cat , d Cat f c Func d , x Base c 1 st f x x c Func d × Base c , y c Func d × Base c 1 st x / m 1 st y / n a m c Nat d n , g 2 nd x Hom c 2 nd y a 2 nd y 1 st m 2 nd x 1 st m 2 nd y comp d 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g
60 0 59 wceq wff eval F = c Cat , d Cat f c Func d , x Base c 1 st f x x c Func d × Base c , y c Func d × Base c 1 st x / m 1 st y / n a m c Nat d n , g 2 nd x Hom c 2 nd y a 2 nd y 1 st m 2 nd x 1 st m 2 nd y comp d 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g