Metamath Proof Explorer


Definition df-funALTV

Description: Define the function relation predicate, i.e., the function predicate. This definition of the function predicate (based on a more general, converse reflexive, relation) and the original definition of function in set.mm df-fun , are always the same, that is ( FunALTV F <-> Fun F ) , see funALTVfun .

The element of the class of functions and the function predicate are the same, that is ( F e. FunsALTV <-> FunALTV F ) when F is a set, see elfunsALTVfunALTV . Alternate definitions are dffunALTV2 , ... , dffunALTV5 . (Contributed by Peter Mazsa, 17-Jul-2021)

Ref Expression
Assertion df-funALTV FunALTVFCnvRefRelFRelF

Detailed syntax breakdown

Step Hyp Ref Expression
0 cF classF
1 0 wfunALTV wffFunALTVF
2 0 ccoss classF
3 2 wcnvrefrel wffCnvRefRelF
4 0 wrel wffRelF
5 3 4 wa wffCnvRefRelFRelF
6 1 5 wb wffFunALTVFCnvRefRelFRelF