Metamath Proof Explorer


Theorem funALTVfun

Description: Our definition of the function predicate df-funALTV (based on a more general, converse reflexive, relation) and the original definition of function in set.mm df-fun , are always the same and interchangeable. (Contributed by Peter Mazsa, 27-Jul-2021)

Ref Expression
Assertion funALTVfun FunALTVFFunF

Proof

Step Hyp Ref Expression
1 cnvrefrelcoss2 CnvRefRelFFI
2 dfcoss3 F=FF-1
3 2 sseq1i FIFF-1I
4 1 3 bitri CnvRefRelFFF-1I
5 4 anbi2ci CnvRefRelFRelFRelFFF-1I
6 df-funALTV FunALTVFCnvRefRelFRelF
7 df-fun FunFRelFFF-1I
8 5 6 7 3bitr4i FunALTVFFunF