Metamath Proof Explorer


Theorem funALTVfun

Description: Our definition of the function predicate df-funALTV (based on a more general, converse reflexive, relation) and the original definition of function in set.mm df-fun , are always the same and interchangeable. (Contributed by Peter Mazsa, 27-Jul-2021)

Ref Expression
Assertion funALTVfun ( FunALTV 𝐹 ↔ Fun 𝐹 )

Proof

Step Hyp Ref Expression
1 cnvrefrelcoss2 ( CnvRefRel ≀ 𝐹 ↔ ≀ 𝐹 ⊆ I )
2 dfcoss3 𝐹 = ( 𝐹 𝐹 )
3 2 sseq1i ( ≀ 𝐹 ⊆ I ↔ ( 𝐹 𝐹 ) ⊆ I )
4 1 3 bitri ( CnvRefRel ≀ 𝐹 ↔ ( 𝐹 𝐹 ) ⊆ I )
5 4 anbi2ci ( ( CnvRefRel ≀ 𝐹 ∧ Rel 𝐹 ) ↔ ( Rel 𝐹 ∧ ( 𝐹 𝐹 ) ⊆ I ) )
6 df-funALTV ( FunALTV 𝐹 ↔ ( CnvRefRel ≀ 𝐹 ∧ Rel 𝐹 ) )
7 df-fun ( Fun 𝐹 ↔ ( Rel 𝐹 ∧ ( 𝐹 𝐹 ) ⊆ I ) )
8 5 6 7 3bitr4i ( FunALTV 𝐹 ↔ Fun 𝐹 )