Metamath Proof Explorer


Definition df-fwddif

Description: Define the forward difference operator. This is a discrete analogue of the derivative operator. Definition 2.42 of GramKnuthPat, p. 47. (Contributed by Scott Fenton, 18-May-2020)

Ref Expression
Assertion df-fwddif =f𝑝𝑚xydomf|y+1domffx+1fx

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfwddif class
1 vf setvarf
2 cc class
3 cpm class𝑝𝑚
4 2 2 3 co class𝑝𝑚
5 vx setvarx
6 vy setvary
7 1 cv setvarf
8 7 cdm classdomf
9 6 cv setvary
10 caddc class+
11 c1 class1
12 9 11 10 co classy+1
13 12 8 wcel wffy+1domf
14 13 6 8 crab classydomf|y+1domf
15 5 cv setvarx
16 15 11 10 co classx+1
17 16 7 cfv classfx+1
18 cmin class
19 15 7 cfv classfx
20 17 19 18 co classfx+1fx
21 5 14 20 cmpt classxydomf|y+1domffx+1fx
22 1 4 21 cmpt classf𝑝𝑚xydomf|y+1domffx+1fx
23 0 22 wceq wff=f𝑝𝑚xydomf|y+1domffx+1fx