Metamath Proof Explorer


Definition df-gcdOLD

Description: gcdOLD ( A , B ) is the largest positive integer that evenly divides both A and B . (Contributed by Jeff Hoffman, 17-Jun-2008) (New usage is discouraged.)

Ref Expression
Assertion df-gcdOLD gcdOLDAB=supx|AxBx<

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA classA
1 cB classB
2 0 1 cgcdOLD classgcdOLDAB
3 vx setvarx
4 cn class
5 cdiv class÷
6 3 cv setvarx
7 0 6 5 co classAx
8 7 4 wcel wffAx
9 1 6 5 co classBx
10 9 4 wcel wffBx
11 8 10 wa wffAxBx
12 11 3 4 crab classx|AxBx
13 clt class<
14 12 4 13 csup classsupx|AxBx<
15 2 14 wceq wffgcdOLDAB=supx|AxBx<