Metamath Proof Explorer


Definition df-gzinf

Description: The Godel-set version of the Axiom of Infinity. (Contributed by Mario Carneiro, 14-Jul-2013)

Ref Expression
Assertion df-gzinf AxInf=𝑔1𝑜𝑔1𝑜𝑔𝑔2𝑜2𝑜𝑔1𝑜𝑔𝑔2𝑜𝑔𝑔𝑔1𝑜

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgzi classAxInf
1 c1o class1𝑜
2 c0 class
3 cgoe class𝑔
4 2 1 3 co class𝑔1𝑜
5 cgoa class𝑔
6 c2o class2𝑜
7 6 1 3 co class2𝑜𝑔1𝑜
8 cgoi class𝑔
9 6 2 3 co class2𝑜𝑔
10 9 4 5 co class2𝑜𝑔𝑔𝑔1𝑜
11 10 2 cgox class𝑔2𝑜𝑔𝑔𝑔1𝑜
12 7 11 8 co class2𝑜𝑔1𝑜𝑔𝑔2𝑜𝑔𝑔𝑔1𝑜
13 12 6 cgol class𝑔2𝑜2𝑜𝑔1𝑜𝑔𝑔2𝑜𝑔𝑔𝑔1𝑜
14 4 13 5 co class𝑔1𝑜𝑔𝑔2𝑜2𝑜𝑔1𝑜𝑔𝑔2𝑜𝑔𝑔𝑔1𝑜
15 14 1 cgox class𝑔1𝑜𝑔1𝑜𝑔𝑔2𝑜2𝑜𝑔1𝑜𝑔𝑔2𝑜𝑔𝑔𝑔1𝑜
16 0 15 wceq wffAxInf=𝑔1𝑜𝑔1𝑜𝑔𝑔2𝑜2𝑜𝑔1𝑜𝑔𝑔2𝑜𝑔𝑔𝑔1𝑜