Metamath Proof Explorer


Definition df-hfsum

Description: Define the sum of two Hilbert space functionals. Definition of Beran p. 111. Note that unlike some authors, we define a functional as any function from ~H to CC , not just linear (or bounded linear) ones. (Contributed by NM, 23-May-2006) (New usage is discouraged.)

Ref Expression
Assertion df-hfsum +fn=f,gxfx+gx

Detailed syntax breakdown

Step Hyp Ref Expression
0 chfs class+fn
1 vf setvarf
2 cc class
3 cmap class𝑚
4 chba class
5 2 4 3 co class
6 vg setvarg
7 vx setvarx
8 1 cv setvarf
9 7 cv setvarx
10 9 8 cfv classfx
11 caddc class+
12 6 cv setvarg
13 9 12 cfv classgx
14 10 13 11 co classfx+gx
15 7 4 14 cmpt classxfx+gx
16 1 6 5 5 15 cmpo classf,gxfx+gx
17 0 16 wceq wff+fn=f,gxfx+gx