Metamath Proof Explorer


Definition df-hlim

Description: Define the limit relation for Hilbert space. See hlimi for its relational expression. Note that f : NN --> ~H is an infinite sequence of vectors, i.e. a mapping from integers to vectors. Definition of converge in Beran p. 96. (Contributed by NM, 6-Jun-2008) (New usage is discouraged.)

Ref Expression
Assertion df-hlim v=fw|f:wx+yzynormfz-w<x

Detailed syntax breakdown

Step Hyp Ref Expression
0 chli classv
1 vf setvarf
2 vw setvarw
3 1 cv setvarf
4 cn class
5 chba class
6 4 5 3 wf wfff:
7 2 cv setvarw
8 7 5 wcel wffw
9 6 8 wa wfff:w
10 vx setvarx
11 crp class+
12 vy setvary
13 vz setvarz
14 cuz class
15 12 cv setvary
16 15 14 cfv classy
17 cno classnorm
18 13 cv setvarz
19 18 3 cfv classfz
20 cmv class-
21 19 7 20 co classfz-w
22 21 17 cfv classnormfz-w
23 clt class<
24 10 cv setvarx
25 22 24 23 wbr wffnormfz-w<x
26 25 13 16 wral wffzynormfz-w<x
27 26 12 4 wrex wffyzynormfz-w<x
28 27 10 11 wral wffx+yzynormfz-w<x
29 9 28 wa wfff:wx+yzynormfz-w<x
30 29 1 2 copab classfw|f:wx+yzynormfz-w<x
31 0 30 wceq wffv=fw|f:wx+yzynormfz-w<x