Description: Define the limit relation for Hilbert space. See hlimi for its relational expression. Note that f : NN --> ~H is an infinite sequence of vectors, i.e. a mapping from integers to vectors. Definition of converge in Beran p. 96. (Contributed by NM, 6-Jun-2008) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | df-hlim | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | chli | |
|
1 | vf | |
|
2 | vw | |
|
3 | 1 | cv | |
4 | cn | |
|
5 | chba | |
|
6 | 4 5 3 | wf | |
7 | 2 | cv | |
8 | 7 5 | wcel | |
9 | 6 8 | wa | |
10 | vx | |
|
11 | crp | |
|
12 | vy | |
|
13 | vz | |
|
14 | cuz | |
|
15 | 12 | cv | |
16 | 15 14 | cfv | |
17 | cno | |
|
18 | 13 | cv | |
19 | 18 3 | cfv | |
20 | cmv | |
|
21 | 19 7 20 | co | |
22 | 21 17 | cfv | |
23 | clt | |
|
24 | 10 | cv | |
25 | 22 24 23 | wbr | |
26 | 25 13 16 | wral | |
27 | 26 12 4 | wrex | |
28 | 27 10 11 | wral | |
29 | 9 28 | wa | |
30 | 29 1 2 | copab | |
31 | 0 30 | wceq | |