Metamath Proof Explorer


Definition df-inftm

Description: Define the relation " x is infinitesimal with respect to y " for a structure w . (Contributed by Thierry Arnoux, 30-Jan-2018)

Ref Expression
Assertion df-inftm =wVxy|xBasewyBasew0w<wxnnwx<wy

Detailed syntax breakdown

Step Hyp Ref Expression
0 cinftm class
1 vw setvarw
2 cvv classV
3 vx setvarx
4 vy setvary
5 3 cv setvarx
6 cbs classBase
7 1 cv setvarw
8 7 6 cfv classBasew
9 5 8 wcel wffxBasew
10 4 cv setvary
11 10 8 wcel wffyBasew
12 9 11 wa wffxBasewyBasew
13 c0g class0𝑔
14 7 13 cfv class0w
15 cplt classlt
16 7 15 cfv class<w
17 14 5 16 wbr wff0w<wx
18 vn setvarn
19 cn class
20 18 cv setvarn
21 cmg class𝑔
22 7 21 cfv classw
23 20 5 22 co classnwx
24 23 10 16 wbr wffnwx<wy
25 24 18 19 wral wffnnwx<wy
26 17 25 wa wff0w<wxnnwx<wy
27 12 26 wa wffxBasewyBasew0w<wxnnwx<wy
28 27 3 4 copab classxy|xBasewyBasew0w<wxnnwx<wy
29 1 2 28 cmpt classwVxy|xBasewyBasew0w<wxnnwx<wy
30 0 29 wceq wff=wVxy|xBasewyBasew0w<wxnnwx<wy