Metamath Proof Explorer


Definition df-ldgis

Description: Define a function which carries polynomial ideals to the sequence of coefficient ideals of leading coefficients of degree- x elements in the polynomial ideal. The proof that this map is strictly monotone is the core of the Hilbert Basis Theorem hbt . (Contributed by Stefan O'Rear, 31-Mar-2015)

Ref Expression
Assertion df-ldgis ldgIdlSeq=rViLIdealPoly1rx0j|kideg1rkxj=coe1kx

Detailed syntax breakdown

Step Hyp Ref Expression
0 cldgis classldgIdlSeq
1 vr setvarr
2 cvv classV
3 vi setvari
4 clidl classLIdeal
5 cpl1 classPoly1
6 1 cv setvarr
7 6 5 cfv classPoly1r
8 7 4 cfv classLIdealPoly1r
9 vx setvarx
10 cn0 class0
11 vj setvarj
12 vk setvark
13 3 cv setvari
14 cdg1 classdeg1
15 6 14 cfv classdeg1r
16 12 cv setvark
17 16 15 cfv classdeg1rk
18 cle class
19 9 cv setvarx
20 17 19 18 wbr wffdeg1rkx
21 11 cv setvarj
22 cco1 classcoe1
23 16 22 cfv classcoe1k
24 19 23 cfv classcoe1kx
25 21 24 wceq wffj=coe1kx
26 20 25 wa wffdeg1rkxj=coe1kx
27 26 12 13 wrex wffkideg1rkxj=coe1kx
28 27 11 cab classj|kideg1rkxj=coe1kx
29 9 10 28 cmpt classx0j|kideg1rkxj=coe1kx
30 3 8 29 cmpt classiLIdealPoly1rx0j|kideg1rkxj=coe1kx
31 1 2 30 cmpt classrViLIdealPoly1rx0j|kideg1rkxj=coe1kx
32 0 31 wceq wffldgIdlSeq=rViLIdealPoly1rx0j|kideg1rkxj=coe1kx