| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hbt.p |
|
| 2 |
|
lnrring |
|
| 3 |
1
|
ply1ring |
|
| 4 |
2 3
|
syl |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
5 6
|
islnr3 |
|
| 8 |
7
|
simprbi |
|
| 9 |
8
|
adantr |
|
| 10 |
|
eqid |
|
| 11 |
|
eqid |
|
| 12 |
1 10 11 6
|
hbtlem7 |
|
| 13 |
2 12
|
sylan |
|
| 14 |
2
|
ad2antrr |
|
| 15 |
|
simplr |
|
| 16 |
|
simpr |
|
| 17 |
|
peano2nn0 |
|
| 18 |
17
|
adantl |
|
| 19 |
|
nn0re |
|
| 20 |
19
|
lep1d |
|
| 21 |
20
|
adantl |
|
| 22 |
1 10 11 14 15 16 18 21
|
hbtlem4 |
|
| 23 |
22
|
ralrimiva |
|
| 24 |
|
nacsfix |
|
| 25 |
9 13 23 24
|
syl3anc |
|
| 26 |
|
fzfi |
|
| 27 |
|
eqid |
|
| 28 |
|
simpll |
|
| 29 |
|
simplr |
|
| 30 |
|
elfznn0 |
|
| 31 |
30
|
adantl |
|
| 32 |
1 10 11 27 28 29 31
|
hbtlem6 |
|
| 33 |
32
|
ralrimiva |
|
| 34 |
|
2fveq3 |
|
| 35 |
34
|
fveq1d |
|
| 36 |
35
|
sseq2d |
|
| 37 |
36
|
ac6sfi |
|
| 38 |
26 33 37
|
sylancr |
|
| 39 |
38
|
adantr |
|
| 40 |
|
frn |
|
| 41 |
40
|
ad2antrl |
|
| 42 |
|
inss1 |
|
| 43 |
41 42
|
sstrdi |
|
| 44 |
43
|
unissd |
|
| 45 |
|
unipw |
|
| 46 |
44 45
|
sseqtrdi |
|
| 47 |
|
simpllr |
|
| 48 |
|
eqid |
|
| 49 |
48 10
|
lidlss |
|
| 50 |
47 49
|
syl |
|
| 51 |
46 50
|
sstrd |
|
| 52 |
|
fvex |
|
| 53 |
52
|
elpw2 |
|
| 54 |
51 53
|
sylibr |
|
| 55 |
|
simprl |
|
| 56 |
|
ffn |
|
| 57 |
|
fniunfv |
|
| 58 |
55 56 57
|
3syl |
|
| 59 |
|
inss2 |
|
| 60 |
55
|
ffvelcdmda |
|
| 61 |
59 60
|
sselid |
|
| 62 |
61
|
ralrimiva |
|
| 63 |
|
iunfi |
|
| 64 |
26 62 63
|
sylancr |
|
| 65 |
58 64
|
eqeltrrd |
|
| 66 |
54 65
|
elind |
|
| 67 |
2
|
ad3antrrr |
|
| 68 |
4
|
ad3antrrr |
|
| 69 |
27 48 10
|
rspcl |
|
| 70 |
68 51 69
|
syl2anc |
|
| 71 |
27 10
|
rspssp |
|
| 72 |
68 47 46 71
|
syl3anc |
|
| 73 |
|
nn0re |
|
| 74 |
73
|
adantl |
|
| 75 |
|
simplrl |
|
| 76 |
75
|
adantr |
|
| 77 |
76
|
nn0red |
|
| 78 |
|
simprl |
|
| 79 |
|
simprr |
|
| 80 |
75
|
adantr |
|
| 81 |
|
fznn0 |
|
| 82 |
80 81
|
syl |
|
| 83 |
78 79 82
|
mpbir2and |
|
| 84 |
|
simplrr |
|
| 85 |
|
fveq2 |
|
| 86 |
|
2fveq3 |
|
| 87 |
86
|
fveq2d |
|
| 88 |
|
id |
|
| 89 |
87 88
|
fveq12d |
|
| 90 |
85 89
|
sseq12d |
|
| 91 |
90
|
rspcva |
|
| 92 |
83 84 91
|
syl2anc |
|
| 93 |
67
|
adantr |
|
| 94 |
|
fvssunirn |
|
| 95 |
94 51
|
sstrid |
|
| 96 |
27 48 10
|
rspcl |
|
| 97 |
68 95 96
|
syl2anc |
|
| 98 |
97
|
adantr |
|
| 99 |
70
|
adantr |
|
| 100 |
67 3
|
syl |
|
| 101 |
100
|
adantr |
|
| 102 |
27 48
|
rspssid |
|
| 103 |
68 51 102
|
syl2anc |
|
| 104 |
103
|
adantr |
|
| 105 |
94 104
|
sstrid |
|
| 106 |
27 10
|
rspssp |
|
| 107 |
101 99 105 106
|
syl3anc |
|
| 108 |
1 10 11 93 98 99 107 78
|
hbtlem3 |
|
| 109 |
92 108
|
sstrd |
|
| 110 |
109
|
anassrs |
|
| 111 |
|
nn0z |
|
| 112 |
111
|
adantr |
|
| 113 |
|
nn0z |
|
| 114 |
113
|
ad2antrl |
|
| 115 |
|
simprr |
|
| 116 |
|
eluz2 |
|
| 117 |
112 114 115 116
|
syl3anbrc |
|
| 118 |
75 117
|
sylan |
|
| 119 |
|
simprr |
|
| 120 |
119
|
ad2antrr |
|
| 121 |
|
fveqeq2 |
|
| 122 |
121
|
rspcva |
|
| 123 |
118 120 122
|
syl2anc |
|
| 124 |
75
|
nn0red |
|
| 125 |
124
|
leidd |
|
| 126 |
109
|
expr |
|
| 127 |
126
|
ralrimiva |
|
| 128 |
|
breq1 |
|
| 129 |
|
fveq2 |
|
| 130 |
|
fveq2 |
|
| 131 |
129 130
|
sseq12d |
|
| 132 |
128 131
|
imbi12d |
|
| 133 |
132
|
rspcva |
|
| 134 |
75 127 133
|
syl2anc |
|
| 135 |
125 134
|
mpd |
|
| 136 |
135
|
adantr |
|
| 137 |
67
|
adantr |
|
| 138 |
70
|
adantr |
|
| 139 |
75
|
adantr |
|
| 140 |
|
simprl |
|
| 141 |
|
simprr |
|
| 142 |
1 10 11 137 138 139 140 141
|
hbtlem4 |
|
| 143 |
136 142
|
sstrd |
|
| 144 |
123 143
|
eqsstrd |
|
| 145 |
144
|
anassrs |
|
| 146 |
74 77 110 145
|
lecasei |
|
| 147 |
146
|
ralrimiva |
|
| 148 |
1 10 11 67 70 47 72 147
|
hbtlem5 |
|
| 149 |
148
|
eqcomd |
|
| 150 |
|
fveq2 |
|
| 151 |
150
|
rspceeqv |
|
| 152 |
66 149 151
|
syl2anc |
|
| 153 |
39 152
|
exlimddv |
|
| 154 |
25 153
|
rexlimddv |
|
| 155 |
154
|
ralrimiva |
|
| 156 |
48 10 27
|
islnr2 |
|
| 157 |
4 155 156
|
sylanbrc |
|