Metamath Proof Explorer


Theorem hbtlem3

Description: The leading ideal function is monotone. (Contributed by Stefan O'Rear, 31-Mar-2015)

Ref Expression
Hypotheses hbtlem.p P = Poly 1 R
hbtlem.u U = LIdeal P
hbtlem.s S = ldgIdlSeq R
hbtlem3.r φ R Ring
hbtlem3.i φ I U
hbtlem3.j φ J U
hbtlem3.ij φ I J
hbtlem3.x φ X 0
Assertion hbtlem3 φ S I X S J X

Proof

Step Hyp Ref Expression
1 hbtlem.p P = Poly 1 R
2 hbtlem.u U = LIdeal P
3 hbtlem.s S = ldgIdlSeq R
4 hbtlem3.r φ R Ring
5 hbtlem3.i φ I U
6 hbtlem3.j φ J U
7 hbtlem3.ij φ I J
8 hbtlem3.x φ X 0
9 ssrexv I J b I deg 1 R b X a = coe 1 b X b J deg 1 R b X a = coe 1 b X
10 7 9 syl φ b I deg 1 R b X a = coe 1 b X b J deg 1 R b X a = coe 1 b X
11 10 ss2abdv φ a | b I deg 1 R b X a = coe 1 b X a | b J deg 1 R b X a = coe 1 b X
12 eqid deg 1 R = deg 1 R
13 1 2 3 12 hbtlem1 R Ring I U X 0 S I X = a | b I deg 1 R b X a = coe 1 b X
14 4 5 8 13 syl3anc φ S I X = a | b I deg 1 R b X a = coe 1 b X
15 1 2 3 12 hbtlem1 R Ring J U X 0 S J X = a | b J deg 1 R b X a = coe 1 b X
16 4 6 8 15 syl3anc φ S J X = a | b J deg 1 R b X a = coe 1 b X
17 11 14 16 3sstr4d φ S I X S J X