| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hbtlem.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
hbtlem.u |
⊢ 𝑈 = ( LIdeal ‘ 𝑃 ) |
| 3 |
|
hbtlem.s |
⊢ 𝑆 = ( ldgIdlSeq ‘ 𝑅 ) |
| 4 |
|
hbtlem3.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 5 |
|
hbtlem3.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑈 ) |
| 6 |
|
hbtlem3.j |
⊢ ( 𝜑 → 𝐽 ∈ 𝑈 ) |
| 7 |
|
hbtlem3.ij |
⊢ ( 𝜑 → 𝐼 ⊆ 𝐽 ) |
| 8 |
|
hbtlem3.x |
⊢ ( 𝜑 → 𝑋 ∈ ℕ0 ) |
| 9 |
|
ssrexv |
⊢ ( 𝐼 ⊆ 𝐽 → ( ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) → ∃ 𝑏 ∈ 𝐽 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) ) ) |
| 10 |
7 9
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) → ∃ 𝑏 ∈ 𝐽 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) ) ) |
| 11 |
10
|
ss2abdv |
⊢ ( 𝜑 → { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ⊆ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐽 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ) |
| 12 |
|
eqid |
⊢ ( deg1 ‘ 𝑅 ) = ( deg1 ‘ 𝑅 ) |
| 13 |
1 2 3 12
|
hbtlem1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝐼 ) ‘ 𝑋 ) = { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ) |
| 14 |
4 5 8 13
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐼 ) ‘ 𝑋 ) = { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ) |
| 15 |
1 2 3 12
|
hbtlem1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐽 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝐽 ) ‘ 𝑋 ) = { 𝑎 ∣ ∃ 𝑏 ∈ 𝐽 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ) |
| 16 |
4 6 8 15
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐽 ) ‘ 𝑋 ) = { 𝑎 ∣ ∃ 𝑏 ∈ 𝐽 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ) |
| 17 |
11 14 16
|
3sstr4d |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐼 ) ‘ 𝑋 ) ⊆ ( ( 𝑆 ‘ 𝐽 ) ‘ 𝑋 ) ) |