| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hbtlem.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
hbtlem.u |
|- U = ( LIdeal ` P ) |
| 3 |
|
hbtlem.s |
|- S = ( ldgIdlSeq ` R ) |
| 4 |
|
hbtlem3.r |
|- ( ph -> R e. Ring ) |
| 5 |
|
hbtlem3.i |
|- ( ph -> I e. U ) |
| 6 |
|
hbtlem3.j |
|- ( ph -> J e. U ) |
| 7 |
|
hbtlem3.ij |
|- ( ph -> I C_ J ) |
| 8 |
|
hbtlem3.x |
|- ( ph -> X e. NN0 ) |
| 9 |
|
ssrexv |
|- ( I C_ J -> ( E. b e. I ( ( ( deg1 ` R ) ` b ) <_ X /\ a = ( ( coe1 ` b ) ` X ) ) -> E. b e. J ( ( ( deg1 ` R ) ` b ) <_ X /\ a = ( ( coe1 ` b ) ` X ) ) ) ) |
| 10 |
7 9
|
syl |
|- ( ph -> ( E. b e. I ( ( ( deg1 ` R ) ` b ) <_ X /\ a = ( ( coe1 ` b ) ` X ) ) -> E. b e. J ( ( ( deg1 ` R ) ` b ) <_ X /\ a = ( ( coe1 ` b ) ` X ) ) ) ) |
| 11 |
10
|
ss2abdv |
|- ( ph -> { a | E. b e. I ( ( ( deg1 ` R ) ` b ) <_ X /\ a = ( ( coe1 ` b ) ` X ) ) } C_ { a | E. b e. J ( ( ( deg1 ` R ) ` b ) <_ X /\ a = ( ( coe1 ` b ) ` X ) ) } ) |
| 12 |
|
eqid |
|- ( deg1 ` R ) = ( deg1 ` R ) |
| 13 |
1 2 3 12
|
hbtlem1 |
|- ( ( R e. Ring /\ I e. U /\ X e. NN0 ) -> ( ( S ` I ) ` X ) = { a | E. b e. I ( ( ( deg1 ` R ) ` b ) <_ X /\ a = ( ( coe1 ` b ) ` X ) ) } ) |
| 14 |
4 5 8 13
|
syl3anc |
|- ( ph -> ( ( S ` I ) ` X ) = { a | E. b e. I ( ( ( deg1 ` R ) ` b ) <_ X /\ a = ( ( coe1 ` b ) ` X ) ) } ) |
| 15 |
1 2 3 12
|
hbtlem1 |
|- ( ( R e. Ring /\ J e. U /\ X e. NN0 ) -> ( ( S ` J ) ` X ) = { a | E. b e. J ( ( ( deg1 ` R ) ` b ) <_ X /\ a = ( ( coe1 ` b ) ` X ) ) } ) |
| 16 |
4 6 8 15
|
syl3anc |
|- ( ph -> ( ( S ` J ) ` X ) = { a | E. b e. J ( ( ( deg1 ` R ) ` b ) <_ X /\ a = ( ( coe1 ` b ) ` X ) ) } ) |
| 17 |
11 14 16
|
3sstr4d |
|- ( ph -> ( ( S ` I ) ` X ) C_ ( ( S ` J ) ` X ) ) |