| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hbt.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
lnrring |
⊢ ( 𝑅 ∈ LNoeR → 𝑅 ∈ Ring ) |
| 3 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 4 |
2 3
|
syl |
⊢ ( 𝑅 ∈ LNoeR → 𝑃 ∈ Ring ) |
| 5 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 6 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
| 7 |
5 6
|
islnr3 |
⊢ ( 𝑅 ∈ LNoeR ↔ ( 𝑅 ∈ Ring ∧ ( LIdeal ‘ 𝑅 ) ∈ ( NoeACS ‘ ( Base ‘ 𝑅 ) ) ) ) |
| 8 |
7
|
simprbi |
⊢ ( 𝑅 ∈ LNoeR → ( LIdeal ‘ 𝑅 ) ∈ ( NoeACS ‘ ( Base ‘ 𝑅 ) ) ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) → ( LIdeal ‘ 𝑅 ) ∈ ( NoeACS ‘ ( Base ‘ 𝑅 ) ) ) |
| 10 |
|
eqid |
⊢ ( LIdeal ‘ 𝑃 ) = ( LIdeal ‘ 𝑃 ) |
| 11 |
|
eqid |
⊢ ( ldgIdlSeq ‘ 𝑅 ) = ( ldgIdlSeq ‘ 𝑅 ) |
| 12 |
1 10 11 6
|
hbtlem7 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) → ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) : ℕ0 ⟶ ( LIdeal ‘ 𝑅 ) ) |
| 13 |
2 12
|
sylan |
⊢ ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) → ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) : ℕ0 ⟶ ( LIdeal ‘ 𝑅 ) ) |
| 14 |
2
|
ad2antrr |
⊢ ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ 𝑏 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
| 15 |
|
simplr |
⊢ ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ 𝑏 ∈ ℕ0 ) → 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) |
| 16 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ 𝑏 ∈ ℕ0 ) → 𝑏 ∈ ℕ0 ) |
| 17 |
|
peano2nn0 |
⊢ ( 𝑏 ∈ ℕ0 → ( 𝑏 + 1 ) ∈ ℕ0 ) |
| 18 |
17
|
adantl |
⊢ ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ 𝑏 ∈ ℕ0 ) → ( 𝑏 + 1 ) ∈ ℕ0 ) |
| 19 |
|
nn0re |
⊢ ( 𝑏 ∈ ℕ0 → 𝑏 ∈ ℝ ) |
| 20 |
19
|
lep1d |
⊢ ( 𝑏 ∈ ℕ0 → 𝑏 ≤ ( 𝑏 + 1 ) ) |
| 21 |
20
|
adantl |
⊢ ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ 𝑏 ∈ ℕ0 ) → 𝑏 ≤ ( 𝑏 + 1 ) ) |
| 22 |
1 10 11 14 15 16 18 21
|
hbtlem4 |
⊢ ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ 𝑏 ∈ ℕ0 ) → ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑏 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ ( 𝑏 + 1 ) ) ) |
| 23 |
22
|
ralrimiva |
⊢ ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) → ∀ 𝑏 ∈ ℕ0 ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑏 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ ( 𝑏 + 1 ) ) ) |
| 24 |
|
nacsfix |
⊢ ( ( ( LIdeal ‘ 𝑅 ) ∈ ( NoeACS ‘ ( Base ‘ 𝑅 ) ) ∧ ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) : ℕ0 ⟶ ( LIdeal ‘ 𝑅 ) ∧ ∀ 𝑏 ∈ ℕ0 ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑏 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ ( 𝑏 + 1 ) ) ) → ∃ 𝑐 ∈ ℕ0 ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) |
| 25 |
9 13 23 24
|
syl3anc |
⊢ ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) → ∃ 𝑐 ∈ ℕ0 ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) |
| 26 |
|
fzfi |
⊢ ( 0 ... 𝑐 ) ∈ Fin |
| 27 |
|
eqid |
⊢ ( RSpan ‘ 𝑃 ) = ( RSpan ‘ 𝑃 ) |
| 28 |
|
simpll |
⊢ ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ 𝑒 ∈ ( 0 ... 𝑐 ) ) → 𝑅 ∈ LNoeR ) |
| 29 |
|
simplr |
⊢ ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ 𝑒 ∈ ( 0 ... 𝑐 ) ) → 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) |
| 30 |
|
elfznn0 |
⊢ ( 𝑒 ∈ ( 0 ... 𝑐 ) → 𝑒 ∈ ℕ0 ) |
| 31 |
30
|
adantl |
⊢ ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ 𝑒 ∈ ( 0 ... 𝑐 ) ) → 𝑒 ∈ ℕ0 ) |
| 32 |
1 10 11 27 28 29 31
|
hbtlem6 |
⊢ ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ 𝑒 ∈ ( 0 ... 𝑐 ) ) → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ 𝑏 ) ) ‘ 𝑒 ) ) |
| 33 |
32
|
ralrimiva |
⊢ ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) → ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ 𝑏 ) ) ‘ 𝑒 ) ) |
| 34 |
|
2fveq3 |
⊢ ( 𝑏 = ( 𝑓 ‘ 𝑒 ) → ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ 𝑏 ) ) = ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ) |
| 35 |
34
|
fveq1d |
⊢ ( 𝑏 = ( 𝑓 ‘ 𝑒 ) → ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ 𝑏 ) ) ‘ 𝑒 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) |
| 36 |
35
|
sseq2d |
⊢ ( 𝑏 = ( 𝑓 ‘ 𝑒 ) → ( ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ 𝑏 ) ) ‘ 𝑒 ) ↔ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) |
| 37 |
36
|
ac6sfi |
⊢ ( ( ( 0 ... 𝑐 ) ∈ Fin ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ 𝑏 ) ) ‘ 𝑒 ) ) → ∃ 𝑓 ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) |
| 38 |
26 33 37
|
sylancr |
⊢ ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) → ∃ 𝑓 ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) |
| 39 |
38
|
adantr |
⊢ ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) → ∃ 𝑓 ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) |
| 40 |
|
frn |
⊢ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) → ran 𝑓 ⊆ ( 𝒫 𝑎 ∩ Fin ) ) |
| 41 |
40
|
ad2antrl |
⊢ ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) → ran 𝑓 ⊆ ( 𝒫 𝑎 ∩ Fin ) ) |
| 42 |
|
inss1 |
⊢ ( 𝒫 𝑎 ∩ Fin ) ⊆ 𝒫 𝑎 |
| 43 |
41 42
|
sstrdi |
⊢ ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) → ran 𝑓 ⊆ 𝒫 𝑎 ) |
| 44 |
43
|
unissd |
⊢ ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) → ∪ ran 𝑓 ⊆ ∪ 𝒫 𝑎 ) |
| 45 |
|
unipw |
⊢ ∪ 𝒫 𝑎 = 𝑎 |
| 46 |
44 45
|
sseqtrdi |
⊢ ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) → ∪ ran 𝑓 ⊆ 𝑎 ) |
| 47 |
|
simpllr |
⊢ ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) → 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) |
| 48 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 49 |
48 10
|
lidlss |
⊢ ( 𝑎 ∈ ( LIdeal ‘ 𝑃 ) → 𝑎 ⊆ ( Base ‘ 𝑃 ) ) |
| 50 |
47 49
|
syl |
⊢ ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) → 𝑎 ⊆ ( Base ‘ 𝑃 ) ) |
| 51 |
46 50
|
sstrd |
⊢ ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) → ∪ ran 𝑓 ⊆ ( Base ‘ 𝑃 ) ) |
| 52 |
|
fvex |
⊢ ( Base ‘ 𝑃 ) ∈ V |
| 53 |
52
|
elpw2 |
⊢ ( ∪ ran 𝑓 ∈ 𝒫 ( Base ‘ 𝑃 ) ↔ ∪ ran 𝑓 ⊆ ( Base ‘ 𝑃 ) ) |
| 54 |
51 53
|
sylibr |
⊢ ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) → ∪ ran 𝑓 ∈ 𝒫 ( Base ‘ 𝑃 ) ) |
| 55 |
|
simprl |
⊢ ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) → 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ) |
| 56 |
|
ffn |
⊢ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) → 𝑓 Fn ( 0 ... 𝑐 ) ) |
| 57 |
|
fniunfv |
⊢ ( 𝑓 Fn ( 0 ... 𝑐 ) → ∪ 𝑔 ∈ ( 0 ... 𝑐 ) ( 𝑓 ‘ 𝑔 ) = ∪ ran 𝑓 ) |
| 58 |
55 56 57
|
3syl |
⊢ ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) → ∪ 𝑔 ∈ ( 0 ... 𝑐 ) ( 𝑓 ‘ 𝑔 ) = ∪ ran 𝑓 ) |
| 59 |
|
inss2 |
⊢ ( 𝒫 𝑎 ∩ Fin ) ⊆ Fin |
| 60 |
55
|
ffvelcdmda |
⊢ ( ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) ∧ 𝑔 ∈ ( 0 ... 𝑐 ) ) → ( 𝑓 ‘ 𝑔 ) ∈ ( 𝒫 𝑎 ∩ Fin ) ) |
| 61 |
59 60
|
sselid |
⊢ ( ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) ∧ 𝑔 ∈ ( 0 ... 𝑐 ) ) → ( 𝑓 ‘ 𝑔 ) ∈ Fin ) |
| 62 |
61
|
ralrimiva |
⊢ ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) → ∀ 𝑔 ∈ ( 0 ... 𝑐 ) ( 𝑓 ‘ 𝑔 ) ∈ Fin ) |
| 63 |
|
iunfi |
⊢ ( ( ( 0 ... 𝑐 ) ∈ Fin ∧ ∀ 𝑔 ∈ ( 0 ... 𝑐 ) ( 𝑓 ‘ 𝑔 ) ∈ Fin ) → ∪ 𝑔 ∈ ( 0 ... 𝑐 ) ( 𝑓 ‘ 𝑔 ) ∈ Fin ) |
| 64 |
26 62 63
|
sylancr |
⊢ ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) → ∪ 𝑔 ∈ ( 0 ... 𝑐 ) ( 𝑓 ‘ 𝑔 ) ∈ Fin ) |
| 65 |
58 64
|
eqeltrrd |
⊢ ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) → ∪ ran 𝑓 ∈ Fin ) |
| 66 |
54 65
|
elind |
⊢ ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) → ∪ ran 𝑓 ∈ ( 𝒫 ( Base ‘ 𝑃 ) ∩ Fin ) ) |
| 67 |
2
|
ad3antrrr |
⊢ ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) → 𝑅 ∈ Ring ) |
| 68 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) → 𝑃 ∈ Ring ) |
| 69 |
27 48 10
|
rspcl |
⊢ ( ( 𝑃 ∈ Ring ∧ ∪ ran 𝑓 ⊆ ( Base ‘ 𝑃 ) ) → ( ( RSpan ‘ 𝑃 ) ‘ ∪ ran 𝑓 ) ∈ ( LIdeal ‘ 𝑃 ) ) |
| 70 |
68 51 69
|
syl2anc |
⊢ ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) → ( ( RSpan ‘ 𝑃 ) ‘ ∪ ran 𝑓 ) ∈ ( LIdeal ‘ 𝑃 ) ) |
| 71 |
27 10
|
rspssp |
⊢ ( ( 𝑃 ∈ Ring ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ∧ ∪ ran 𝑓 ⊆ 𝑎 ) → ( ( RSpan ‘ 𝑃 ) ‘ ∪ ran 𝑓 ) ⊆ 𝑎 ) |
| 72 |
68 47 46 71
|
syl3anc |
⊢ ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) → ( ( RSpan ‘ 𝑃 ) ‘ ∪ ran 𝑓 ) ⊆ 𝑎 ) |
| 73 |
|
nn0re |
⊢ ( 𝑔 ∈ ℕ0 → 𝑔 ∈ ℝ ) |
| 74 |
73
|
adantl |
⊢ ( ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) ∧ 𝑔 ∈ ℕ0 ) → 𝑔 ∈ ℝ ) |
| 75 |
|
simplrl |
⊢ ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) → 𝑐 ∈ ℕ0 ) |
| 76 |
75
|
adantr |
⊢ ( ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) ∧ 𝑔 ∈ ℕ0 ) → 𝑐 ∈ ℕ0 ) |
| 77 |
76
|
nn0red |
⊢ ( ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) ∧ 𝑔 ∈ ℕ0 ) → 𝑐 ∈ ℝ ) |
| 78 |
|
simprl |
⊢ ( ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) ∧ ( 𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐 ) ) → 𝑔 ∈ ℕ0 ) |
| 79 |
|
simprr |
⊢ ( ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) ∧ ( 𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐 ) ) → 𝑔 ≤ 𝑐 ) |
| 80 |
75
|
adantr |
⊢ ( ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) ∧ ( 𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐 ) ) → 𝑐 ∈ ℕ0 ) |
| 81 |
|
fznn0 |
⊢ ( 𝑐 ∈ ℕ0 → ( 𝑔 ∈ ( 0 ... 𝑐 ) ↔ ( 𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐 ) ) ) |
| 82 |
80 81
|
syl |
⊢ ( ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) ∧ ( 𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐 ) ) → ( 𝑔 ∈ ( 0 ... 𝑐 ) ↔ ( 𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐 ) ) ) |
| 83 |
78 79 82
|
mpbir2and |
⊢ ( ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) ∧ ( 𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐 ) ) → 𝑔 ∈ ( 0 ... 𝑐 ) ) |
| 84 |
|
simplrr |
⊢ ( ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) ∧ ( 𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐 ) ) → ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) |
| 85 |
|
fveq2 |
⊢ ( 𝑒 = 𝑔 → ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑔 ) ) |
| 86 |
|
2fveq3 |
⊢ ( 𝑒 = 𝑔 → ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) = ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑔 ) ) ) |
| 87 |
86
|
fveq2d |
⊢ ( 𝑒 = 𝑔 → ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) = ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑔 ) ) ) ) |
| 88 |
|
id |
⊢ ( 𝑒 = 𝑔 → 𝑒 = 𝑔 ) |
| 89 |
87 88
|
fveq12d |
⊢ ( 𝑒 = 𝑔 → ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑔 ) ) ) ‘ 𝑔 ) ) |
| 90 |
85 89
|
sseq12d |
⊢ ( 𝑒 = 𝑔 → ( ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ↔ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑔 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑔 ) ) ) ‘ 𝑔 ) ) ) |
| 91 |
90
|
rspcva |
⊢ ( ( 𝑔 ∈ ( 0 ... 𝑐 ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) → ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑔 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑔 ) ) ) ‘ 𝑔 ) ) |
| 92 |
83 84 91
|
syl2anc |
⊢ ( ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) ∧ ( 𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐 ) ) → ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑔 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑔 ) ) ) ‘ 𝑔 ) ) |
| 93 |
67
|
adantr |
⊢ ( ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) ∧ ( 𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐 ) ) → 𝑅 ∈ Ring ) |
| 94 |
|
fvssunirn |
⊢ ( 𝑓 ‘ 𝑔 ) ⊆ ∪ ran 𝑓 |
| 95 |
94 51
|
sstrid |
⊢ ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) → ( 𝑓 ‘ 𝑔 ) ⊆ ( Base ‘ 𝑃 ) ) |
| 96 |
27 48 10
|
rspcl |
⊢ ( ( 𝑃 ∈ Ring ∧ ( 𝑓 ‘ 𝑔 ) ⊆ ( Base ‘ 𝑃 ) ) → ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑔 ) ) ∈ ( LIdeal ‘ 𝑃 ) ) |
| 97 |
68 95 96
|
syl2anc |
⊢ ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) → ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑔 ) ) ∈ ( LIdeal ‘ 𝑃 ) ) |
| 98 |
97
|
adantr |
⊢ ( ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) ∧ ( 𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐 ) ) → ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑔 ) ) ∈ ( LIdeal ‘ 𝑃 ) ) |
| 99 |
70
|
adantr |
⊢ ( ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) ∧ ( 𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐 ) ) → ( ( RSpan ‘ 𝑃 ) ‘ ∪ ran 𝑓 ) ∈ ( LIdeal ‘ 𝑃 ) ) |
| 100 |
67 3
|
syl |
⊢ ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) → 𝑃 ∈ Ring ) |
| 101 |
100
|
adantr |
⊢ ( ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) ∧ ( 𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐 ) ) → 𝑃 ∈ Ring ) |
| 102 |
27 48
|
rspssid |
⊢ ( ( 𝑃 ∈ Ring ∧ ∪ ran 𝑓 ⊆ ( Base ‘ 𝑃 ) ) → ∪ ran 𝑓 ⊆ ( ( RSpan ‘ 𝑃 ) ‘ ∪ ran 𝑓 ) ) |
| 103 |
68 51 102
|
syl2anc |
⊢ ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) → ∪ ran 𝑓 ⊆ ( ( RSpan ‘ 𝑃 ) ‘ ∪ ran 𝑓 ) ) |
| 104 |
103
|
adantr |
⊢ ( ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) ∧ ( 𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐 ) ) → ∪ ran 𝑓 ⊆ ( ( RSpan ‘ 𝑃 ) ‘ ∪ ran 𝑓 ) ) |
| 105 |
94 104
|
sstrid |
⊢ ( ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) ∧ ( 𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐 ) ) → ( 𝑓 ‘ 𝑔 ) ⊆ ( ( RSpan ‘ 𝑃 ) ‘ ∪ ran 𝑓 ) ) |
| 106 |
27 10
|
rspssp |
⊢ ( ( 𝑃 ∈ Ring ∧ ( ( RSpan ‘ 𝑃 ) ‘ ∪ ran 𝑓 ) ∈ ( LIdeal ‘ 𝑃 ) ∧ ( 𝑓 ‘ 𝑔 ) ⊆ ( ( RSpan ‘ 𝑃 ) ‘ ∪ ran 𝑓 ) ) → ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑔 ) ) ⊆ ( ( RSpan ‘ 𝑃 ) ‘ ∪ ran 𝑓 ) ) |
| 107 |
101 99 105 106
|
syl3anc |
⊢ ( ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) ∧ ( 𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐 ) ) → ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑔 ) ) ⊆ ( ( RSpan ‘ 𝑃 ) ‘ ∪ ran 𝑓 ) ) |
| 108 |
1 10 11 93 98 99 107 78
|
hbtlem3 |
⊢ ( ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) ∧ ( 𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐 ) ) → ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑔 ) ) ) ‘ 𝑔 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ∪ ran 𝑓 ) ) ‘ 𝑔 ) ) |
| 109 |
92 108
|
sstrd |
⊢ ( ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) ∧ ( 𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐 ) ) → ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑔 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ∪ ran 𝑓 ) ) ‘ 𝑔 ) ) |
| 110 |
109
|
anassrs |
⊢ ( ( ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) ∧ 𝑔 ∈ ℕ0 ) ∧ 𝑔 ≤ 𝑐 ) → ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑔 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ∪ ran 𝑓 ) ) ‘ 𝑔 ) ) |
| 111 |
|
nn0z |
⊢ ( 𝑐 ∈ ℕ0 → 𝑐 ∈ ℤ ) |
| 112 |
111
|
adantr |
⊢ ( ( 𝑐 ∈ ℕ0 ∧ ( 𝑔 ∈ ℕ0 ∧ 𝑐 ≤ 𝑔 ) ) → 𝑐 ∈ ℤ ) |
| 113 |
|
nn0z |
⊢ ( 𝑔 ∈ ℕ0 → 𝑔 ∈ ℤ ) |
| 114 |
113
|
ad2antrl |
⊢ ( ( 𝑐 ∈ ℕ0 ∧ ( 𝑔 ∈ ℕ0 ∧ 𝑐 ≤ 𝑔 ) ) → 𝑔 ∈ ℤ ) |
| 115 |
|
simprr |
⊢ ( ( 𝑐 ∈ ℕ0 ∧ ( 𝑔 ∈ ℕ0 ∧ 𝑐 ≤ 𝑔 ) ) → 𝑐 ≤ 𝑔 ) |
| 116 |
|
eluz2 |
⊢ ( 𝑔 ∈ ( ℤ≥ ‘ 𝑐 ) ↔ ( 𝑐 ∈ ℤ ∧ 𝑔 ∈ ℤ ∧ 𝑐 ≤ 𝑔 ) ) |
| 117 |
112 114 115 116
|
syl3anbrc |
⊢ ( ( 𝑐 ∈ ℕ0 ∧ ( 𝑔 ∈ ℕ0 ∧ 𝑐 ≤ 𝑔 ) ) → 𝑔 ∈ ( ℤ≥ ‘ 𝑐 ) ) |
| 118 |
75 117
|
sylan |
⊢ ( ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) ∧ ( 𝑔 ∈ ℕ0 ∧ 𝑐 ≤ 𝑔 ) ) → 𝑔 ∈ ( ℤ≥ ‘ 𝑐 ) ) |
| 119 |
|
simprr |
⊢ ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) → ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) |
| 120 |
119
|
ad2antrr |
⊢ ( ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) ∧ ( 𝑔 ∈ ℕ0 ∧ 𝑐 ≤ 𝑔 ) ) → ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) |
| 121 |
|
fveqeq2 |
⊢ ( 𝑑 = 𝑔 → ( ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ↔ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑔 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) |
| 122 |
121
|
rspcva |
⊢ ( ( 𝑔 ∈ ( ℤ≥ ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) → ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑔 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) |
| 123 |
118 120 122
|
syl2anc |
⊢ ( ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) ∧ ( 𝑔 ∈ ℕ0 ∧ 𝑐 ≤ 𝑔 ) ) → ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑔 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) |
| 124 |
75
|
nn0red |
⊢ ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) → 𝑐 ∈ ℝ ) |
| 125 |
124
|
leidd |
⊢ ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) → 𝑐 ≤ 𝑐 ) |
| 126 |
109
|
expr |
⊢ ( ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) ∧ 𝑔 ∈ ℕ0 ) → ( 𝑔 ≤ 𝑐 → ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑔 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ∪ ran 𝑓 ) ) ‘ 𝑔 ) ) ) |
| 127 |
126
|
ralrimiva |
⊢ ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) → ∀ 𝑔 ∈ ℕ0 ( 𝑔 ≤ 𝑐 → ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑔 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ∪ ran 𝑓 ) ) ‘ 𝑔 ) ) ) |
| 128 |
|
breq1 |
⊢ ( 𝑔 = 𝑐 → ( 𝑔 ≤ 𝑐 ↔ 𝑐 ≤ 𝑐 ) ) |
| 129 |
|
fveq2 |
⊢ ( 𝑔 = 𝑐 → ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑔 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) |
| 130 |
|
fveq2 |
⊢ ( 𝑔 = 𝑐 → ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ∪ ran 𝑓 ) ) ‘ 𝑔 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ∪ ran 𝑓 ) ) ‘ 𝑐 ) ) |
| 131 |
129 130
|
sseq12d |
⊢ ( 𝑔 = 𝑐 → ( ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑔 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ∪ ran 𝑓 ) ) ‘ 𝑔 ) ↔ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ∪ ran 𝑓 ) ) ‘ 𝑐 ) ) ) |
| 132 |
128 131
|
imbi12d |
⊢ ( 𝑔 = 𝑐 → ( ( 𝑔 ≤ 𝑐 → ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑔 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ∪ ran 𝑓 ) ) ‘ 𝑔 ) ) ↔ ( 𝑐 ≤ 𝑐 → ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ∪ ran 𝑓 ) ) ‘ 𝑐 ) ) ) ) |
| 133 |
132
|
rspcva |
⊢ ( ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑔 ∈ ℕ0 ( 𝑔 ≤ 𝑐 → ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑔 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ∪ ran 𝑓 ) ) ‘ 𝑔 ) ) ) → ( 𝑐 ≤ 𝑐 → ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ∪ ran 𝑓 ) ) ‘ 𝑐 ) ) ) |
| 134 |
75 127 133
|
syl2anc |
⊢ ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) → ( 𝑐 ≤ 𝑐 → ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ∪ ran 𝑓 ) ) ‘ 𝑐 ) ) ) |
| 135 |
125 134
|
mpd |
⊢ ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) → ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ∪ ran 𝑓 ) ) ‘ 𝑐 ) ) |
| 136 |
135
|
adantr |
⊢ ( ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) ∧ ( 𝑔 ∈ ℕ0 ∧ 𝑐 ≤ 𝑔 ) ) → ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ∪ ran 𝑓 ) ) ‘ 𝑐 ) ) |
| 137 |
67
|
adantr |
⊢ ( ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) ∧ ( 𝑔 ∈ ℕ0 ∧ 𝑐 ≤ 𝑔 ) ) → 𝑅 ∈ Ring ) |
| 138 |
70
|
adantr |
⊢ ( ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) ∧ ( 𝑔 ∈ ℕ0 ∧ 𝑐 ≤ 𝑔 ) ) → ( ( RSpan ‘ 𝑃 ) ‘ ∪ ran 𝑓 ) ∈ ( LIdeal ‘ 𝑃 ) ) |
| 139 |
75
|
adantr |
⊢ ( ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) ∧ ( 𝑔 ∈ ℕ0 ∧ 𝑐 ≤ 𝑔 ) ) → 𝑐 ∈ ℕ0 ) |
| 140 |
|
simprl |
⊢ ( ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) ∧ ( 𝑔 ∈ ℕ0 ∧ 𝑐 ≤ 𝑔 ) ) → 𝑔 ∈ ℕ0 ) |
| 141 |
|
simprr |
⊢ ( ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) ∧ ( 𝑔 ∈ ℕ0 ∧ 𝑐 ≤ 𝑔 ) ) → 𝑐 ≤ 𝑔 ) |
| 142 |
1 10 11 137 138 139 140 141
|
hbtlem4 |
⊢ ( ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) ∧ ( 𝑔 ∈ ℕ0 ∧ 𝑐 ≤ 𝑔 ) ) → ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ∪ ran 𝑓 ) ) ‘ 𝑐 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ∪ ran 𝑓 ) ) ‘ 𝑔 ) ) |
| 143 |
136 142
|
sstrd |
⊢ ( ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) ∧ ( 𝑔 ∈ ℕ0 ∧ 𝑐 ≤ 𝑔 ) ) → ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ∪ ran 𝑓 ) ) ‘ 𝑔 ) ) |
| 144 |
123 143
|
eqsstrd |
⊢ ( ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) ∧ ( 𝑔 ∈ ℕ0 ∧ 𝑐 ≤ 𝑔 ) ) → ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑔 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ∪ ran 𝑓 ) ) ‘ 𝑔 ) ) |
| 145 |
144
|
anassrs |
⊢ ( ( ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) ∧ 𝑔 ∈ ℕ0 ) ∧ 𝑐 ≤ 𝑔 ) → ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑔 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ∪ ran 𝑓 ) ) ‘ 𝑔 ) ) |
| 146 |
74 77 110 145
|
lecasei |
⊢ ( ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) ∧ 𝑔 ∈ ℕ0 ) → ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑔 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ∪ ran 𝑓 ) ) ‘ 𝑔 ) ) |
| 147 |
146
|
ralrimiva |
⊢ ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) → ∀ 𝑔 ∈ ℕ0 ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑔 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ∪ ran 𝑓 ) ) ‘ 𝑔 ) ) |
| 148 |
1 10 11 67 70 47 72 147
|
hbtlem5 |
⊢ ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) → ( ( RSpan ‘ 𝑃 ) ‘ ∪ ran 𝑓 ) = 𝑎 ) |
| 149 |
148
|
eqcomd |
⊢ ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) → 𝑎 = ( ( RSpan ‘ 𝑃 ) ‘ ∪ ran 𝑓 ) ) |
| 150 |
|
fveq2 |
⊢ ( 𝑏 = ∪ ran 𝑓 → ( ( RSpan ‘ 𝑃 ) ‘ 𝑏 ) = ( ( RSpan ‘ 𝑃 ) ‘ ∪ ran 𝑓 ) ) |
| 151 |
150
|
rspceeqv |
⊢ ( ( ∪ ran 𝑓 ∈ ( 𝒫 ( Base ‘ 𝑃 ) ∩ Fin ) ∧ 𝑎 = ( ( RSpan ‘ 𝑃 ) ‘ ∪ ran 𝑓 ) ) → ∃ 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑃 ) ∩ Fin ) 𝑎 = ( ( RSpan ‘ 𝑃 ) ‘ 𝑏 ) ) |
| 152 |
66 149 151
|
syl2anc |
⊢ ( ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) ∧ ( 𝑓 : ( 0 ... 𝑐 ) ⟶ ( 𝒫 𝑎 ∩ Fin ) ∧ ∀ 𝑒 ∈ ( 0 ... 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑒 ) ⊆ ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ ( ( RSpan ‘ 𝑃 ) ‘ ( 𝑓 ‘ 𝑒 ) ) ) ‘ 𝑒 ) ) ) → ∃ 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑃 ) ∩ Fin ) 𝑎 = ( ( RSpan ‘ 𝑃 ) ‘ 𝑏 ) ) |
| 153 |
39 152
|
exlimddv |
⊢ ( ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) ∧ ( 𝑐 ∈ ℕ0 ∧ ∀ 𝑑 ∈ ( ℤ≥ ‘ 𝑐 ) ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑑 ) = ( ( ( ldgIdlSeq ‘ 𝑅 ) ‘ 𝑎 ) ‘ 𝑐 ) ) ) → ∃ 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑃 ) ∩ Fin ) 𝑎 = ( ( RSpan ‘ 𝑃 ) ‘ 𝑏 ) ) |
| 154 |
25 153
|
rexlimddv |
⊢ ( ( 𝑅 ∈ LNoeR ∧ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ) → ∃ 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑃 ) ∩ Fin ) 𝑎 = ( ( RSpan ‘ 𝑃 ) ‘ 𝑏 ) ) |
| 155 |
154
|
ralrimiva |
⊢ ( 𝑅 ∈ LNoeR → ∀ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ∃ 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑃 ) ∩ Fin ) 𝑎 = ( ( RSpan ‘ 𝑃 ) ‘ 𝑏 ) ) |
| 156 |
48 10 27
|
islnr2 |
⊢ ( 𝑃 ∈ LNoeR ↔ ( 𝑃 ∈ Ring ∧ ∀ 𝑎 ∈ ( LIdeal ‘ 𝑃 ) ∃ 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑃 ) ∩ Fin ) 𝑎 = ( ( RSpan ‘ 𝑃 ) ‘ 𝑏 ) ) ) |
| 157 |
4 155 156
|
sylanbrc |
⊢ ( 𝑅 ∈ LNoeR → 𝑃 ∈ LNoeR ) |