| Step |
Hyp |
Ref |
Expression |
| 1 |
|
islnr3.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
islnr3.u |
⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) |
| 3 |
|
eqid |
⊢ ( RSpan ‘ 𝑅 ) = ( RSpan ‘ 𝑅 ) |
| 4 |
1 2 3
|
islnr2 |
⊢ ( 𝑅 ∈ LNoeR ↔ ( 𝑅 ∈ Ring ∧ ∀ 𝑥 ∈ 𝑈 ∃ 𝑦 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑥 = ( ( RSpan ‘ 𝑅 ) ‘ 𝑦 ) ) ) |
| 5 |
|
eqid |
⊢ ( mrCls ‘ 𝑈 ) = ( mrCls ‘ 𝑈 ) |
| 6 |
2 3 5
|
mrcrsp |
⊢ ( 𝑅 ∈ Ring → ( RSpan ‘ 𝑅 ) = ( mrCls ‘ 𝑈 ) ) |
| 7 |
6
|
fveq1d |
⊢ ( 𝑅 ∈ Ring → ( ( RSpan ‘ 𝑅 ) ‘ 𝑦 ) = ( ( mrCls ‘ 𝑈 ) ‘ 𝑦 ) ) |
| 8 |
7
|
eqeq2d |
⊢ ( 𝑅 ∈ Ring → ( 𝑥 = ( ( RSpan ‘ 𝑅 ) ‘ 𝑦 ) ↔ 𝑥 = ( ( mrCls ‘ 𝑈 ) ‘ 𝑦 ) ) ) |
| 9 |
8
|
rexbidv |
⊢ ( 𝑅 ∈ Ring → ( ∃ 𝑦 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑥 = ( ( RSpan ‘ 𝑅 ) ‘ 𝑦 ) ↔ ∃ 𝑦 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑥 = ( ( mrCls ‘ 𝑈 ) ‘ 𝑦 ) ) ) |
| 10 |
9
|
ralbidv |
⊢ ( 𝑅 ∈ Ring → ( ∀ 𝑥 ∈ 𝑈 ∃ 𝑦 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑥 = ( ( RSpan ‘ 𝑅 ) ‘ 𝑦 ) ↔ ∀ 𝑥 ∈ 𝑈 ∃ 𝑦 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑥 = ( ( mrCls ‘ 𝑈 ) ‘ 𝑦 ) ) ) |
| 11 |
1 2
|
lidlacs |
⊢ ( 𝑅 ∈ Ring → 𝑈 ∈ ( ACS ‘ 𝐵 ) ) |
| 12 |
11
|
biantrurd |
⊢ ( 𝑅 ∈ Ring → ( ∀ 𝑥 ∈ 𝑈 ∃ 𝑦 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑥 = ( ( mrCls ‘ 𝑈 ) ‘ 𝑦 ) ↔ ( 𝑈 ∈ ( ACS ‘ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑈 ∃ 𝑦 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑥 = ( ( mrCls ‘ 𝑈 ) ‘ 𝑦 ) ) ) ) |
| 13 |
10 12
|
bitrd |
⊢ ( 𝑅 ∈ Ring → ( ∀ 𝑥 ∈ 𝑈 ∃ 𝑦 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑥 = ( ( RSpan ‘ 𝑅 ) ‘ 𝑦 ) ↔ ( 𝑈 ∈ ( ACS ‘ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑈 ∃ 𝑦 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑥 = ( ( mrCls ‘ 𝑈 ) ‘ 𝑦 ) ) ) ) |
| 14 |
5
|
isnacs |
⊢ ( 𝑈 ∈ ( NoeACS ‘ 𝐵 ) ↔ ( 𝑈 ∈ ( ACS ‘ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑈 ∃ 𝑦 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑥 = ( ( mrCls ‘ 𝑈 ) ‘ 𝑦 ) ) ) |
| 15 |
13 14
|
bitr4di |
⊢ ( 𝑅 ∈ Ring → ( ∀ 𝑥 ∈ 𝑈 ∃ 𝑦 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑥 = ( ( RSpan ‘ 𝑅 ) ‘ 𝑦 ) ↔ 𝑈 ∈ ( NoeACS ‘ 𝐵 ) ) ) |
| 16 |
15
|
pm5.32i |
⊢ ( ( 𝑅 ∈ Ring ∧ ∀ 𝑥 ∈ 𝑈 ∃ 𝑦 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑥 = ( ( RSpan ‘ 𝑅 ) ‘ 𝑦 ) ) ↔ ( 𝑅 ∈ Ring ∧ 𝑈 ∈ ( NoeACS ‘ 𝐵 ) ) ) |
| 17 |
4 16
|
bitri |
⊢ ( 𝑅 ∈ LNoeR ↔ ( 𝑅 ∈ Ring ∧ 𝑈 ∈ ( NoeACS ‘ 𝐵 ) ) ) |