| Step |
Hyp |
Ref |
Expression |
| 1 |
|
islnr2.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
islnr2.u |
⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) |
| 3 |
|
islnr2.n |
⊢ 𝑁 = ( RSpan ‘ 𝑅 ) |
| 4 |
|
islnr |
⊢ ( 𝑅 ∈ LNoeR ↔ ( 𝑅 ∈ Ring ∧ ( ringLMod ‘ 𝑅 ) ∈ LNoeM ) ) |
| 5 |
|
rlmlmod |
⊢ ( 𝑅 ∈ Ring → ( ringLMod ‘ 𝑅 ) ∈ LMod ) |
| 6 |
|
rlmbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( ringLMod ‘ 𝑅 ) ) |
| 7 |
1 6
|
eqtri |
⊢ 𝐵 = ( Base ‘ ( ringLMod ‘ 𝑅 ) ) |
| 8 |
|
lidlval |
⊢ ( LIdeal ‘ 𝑅 ) = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) |
| 9 |
2 8
|
eqtri |
⊢ 𝑈 = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) |
| 10 |
|
rspval |
⊢ ( RSpan ‘ 𝑅 ) = ( LSpan ‘ ( ringLMod ‘ 𝑅 ) ) |
| 11 |
3 10
|
eqtri |
⊢ 𝑁 = ( LSpan ‘ ( ringLMod ‘ 𝑅 ) ) |
| 12 |
7 9 11
|
islnm2 |
⊢ ( ( ringLMod ‘ 𝑅 ) ∈ LNoeM ↔ ( ( ringLMod ‘ 𝑅 ) ∈ LMod ∧ ∀ 𝑖 ∈ 𝑈 ∃ 𝑔 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑖 = ( 𝑁 ‘ 𝑔 ) ) ) |
| 13 |
12
|
baib |
⊢ ( ( ringLMod ‘ 𝑅 ) ∈ LMod → ( ( ringLMod ‘ 𝑅 ) ∈ LNoeM ↔ ∀ 𝑖 ∈ 𝑈 ∃ 𝑔 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑖 = ( 𝑁 ‘ 𝑔 ) ) ) |
| 14 |
5 13
|
syl |
⊢ ( 𝑅 ∈ Ring → ( ( ringLMod ‘ 𝑅 ) ∈ LNoeM ↔ ∀ 𝑖 ∈ 𝑈 ∃ 𝑔 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑖 = ( 𝑁 ‘ 𝑔 ) ) ) |
| 15 |
14
|
pm5.32i |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ringLMod ‘ 𝑅 ) ∈ LNoeM ) ↔ ( 𝑅 ∈ Ring ∧ ∀ 𝑖 ∈ 𝑈 ∃ 𝑔 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑖 = ( 𝑁 ‘ 𝑔 ) ) ) |
| 16 |
4 15
|
bitri |
⊢ ( 𝑅 ∈ LNoeR ↔ ( 𝑅 ∈ Ring ∧ ∀ 𝑖 ∈ 𝑈 ∃ 𝑔 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑖 = ( 𝑁 ‘ 𝑔 ) ) ) |