Metamath Proof Explorer


Theorem islnr2

Description: Property of being a left-Noetherian ring in terms of finite generation of ideals (the usual "pure ring theory" definition). (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypotheses islnr2.b
|- B = ( Base ` R )
islnr2.u
|- U = ( LIdeal ` R )
islnr2.n
|- N = ( RSpan ` R )
Assertion islnr2
|- ( R e. LNoeR <-> ( R e. Ring /\ A. i e. U E. g e. ( ~P B i^i Fin ) i = ( N ` g ) ) )

Proof

Step Hyp Ref Expression
1 islnr2.b
 |-  B = ( Base ` R )
2 islnr2.u
 |-  U = ( LIdeal ` R )
3 islnr2.n
 |-  N = ( RSpan ` R )
4 islnr
 |-  ( R e. LNoeR <-> ( R e. Ring /\ ( ringLMod ` R ) e. LNoeM ) )
5 rlmlmod
 |-  ( R e. Ring -> ( ringLMod ` R ) e. LMod )
6 rlmbas
 |-  ( Base ` R ) = ( Base ` ( ringLMod ` R ) )
7 1 6 eqtri
 |-  B = ( Base ` ( ringLMod ` R ) )
8 lidlval
 |-  ( LIdeal ` R ) = ( LSubSp ` ( ringLMod ` R ) )
9 2 8 eqtri
 |-  U = ( LSubSp ` ( ringLMod ` R ) )
10 rspval
 |-  ( RSpan ` R ) = ( LSpan ` ( ringLMod ` R ) )
11 3 10 eqtri
 |-  N = ( LSpan ` ( ringLMod ` R ) )
12 7 9 11 islnm2
 |-  ( ( ringLMod ` R ) e. LNoeM <-> ( ( ringLMod ` R ) e. LMod /\ A. i e. U E. g e. ( ~P B i^i Fin ) i = ( N ` g ) ) )
13 12 baib
 |-  ( ( ringLMod ` R ) e. LMod -> ( ( ringLMod ` R ) e. LNoeM <-> A. i e. U E. g e. ( ~P B i^i Fin ) i = ( N ` g ) ) )
14 5 13 syl
 |-  ( R e. Ring -> ( ( ringLMod ` R ) e. LNoeM <-> A. i e. U E. g e. ( ~P B i^i Fin ) i = ( N ` g ) ) )
15 14 pm5.32i
 |-  ( ( R e. Ring /\ ( ringLMod ` R ) e. LNoeM ) <-> ( R e. Ring /\ A. i e. U E. g e. ( ~P B i^i Fin ) i = ( N ` g ) ) )
16 4 15 bitri
 |-  ( R e. LNoeR <-> ( R e. Ring /\ A. i e. U E. g e. ( ~P B i^i Fin ) i = ( N ` g ) ) )