| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hbtlem.p |
|
| 2 |
|
hbtlem.u |
|
| 3 |
|
hbtlem.s |
|
| 4 |
|
hbtlem4.r |
|
| 5 |
|
hbtlem4.i |
|
| 6 |
|
hbtlem4.x |
|
| 7 |
|
hbtlem4.y |
|
| 8 |
|
hbtlem4.xy |
|
| 9 |
4
|
ad2antrr |
|
| 10 |
1
|
ply1ring |
|
| 11 |
9 10
|
syl |
|
| 12 |
5
|
ad2antrr |
|
| 13 |
|
eqid |
|
| 14 |
|
eqid |
|
| 15 |
13 14
|
mgpbas |
|
| 16 |
|
eqid |
|
| 17 |
13
|
ringmgp |
|
| 18 |
11 17
|
syl |
|
| 19 |
6
|
ad2antrr |
|
| 20 |
7
|
ad2antrr |
|
| 21 |
8
|
ad2antrr |
|
| 22 |
|
nn0sub2 |
|
| 23 |
19 20 21 22
|
syl3anc |
|
| 24 |
|
eqid |
|
| 25 |
24 1 14
|
vr1cl |
|
| 26 |
9 25
|
syl |
|
| 27 |
15 16 18 23 26
|
mulgnn0cld |
|
| 28 |
|
simplr |
|
| 29 |
|
eqid |
|
| 30 |
2 14 29
|
lidlmcl |
|
| 31 |
11 12 27 28 30
|
syl22anc |
|
| 32 |
|
eqid |
|
| 33 |
14 2
|
lidlss |
|
| 34 |
12 33
|
syl |
|
| 35 |
34 28
|
sseldd |
|
| 36 |
32 1 24 13 16
|
deg1pwle |
|
| 37 |
9 23 36
|
syl2anc |
|
| 38 |
|
simpr |
|
| 39 |
1 32 9 14 29 27 35 23 19 37 38
|
deg1mulle2 |
|
| 40 |
20
|
nn0cnd |
|
| 41 |
19
|
nn0cnd |
|
| 42 |
40 41
|
npcand |
|
| 43 |
39 42
|
breqtrd |
|
| 44 |
|
eqid |
|
| 45 |
44 1 24 13 16 14 29 9 35 23 19
|
coe1pwmulfv |
|
| 46 |
42
|
fveq2d |
|
| 47 |
45 46
|
eqtr3d |
|
| 48 |
|
fveq2 |
|
| 49 |
48
|
breq1d |
|
| 50 |
|
fveq2 |
|
| 51 |
50
|
fveq1d |
|
| 52 |
51
|
eqeq2d |
|
| 53 |
49 52
|
anbi12d |
|
| 54 |
53
|
rspcev |
|
| 55 |
31 43 47 54
|
syl12anc |
|
| 56 |
|
eqeq1 |
|
| 57 |
56
|
anbi2d |
|
| 58 |
57
|
rexbidv |
|
| 59 |
55 58
|
syl5ibrcom |
|
| 60 |
59
|
expimpd |
|
| 61 |
60
|
rexlimdva |
|
| 62 |
61
|
ss2abdv |
|
| 63 |
1 2 3 32
|
hbtlem1 |
|
| 64 |
4 5 6 63
|
syl3anc |
|
| 65 |
1 2 3 32
|
hbtlem1 |
|
| 66 |
4 5 7 65
|
syl3anc |
|
| 67 |
62 64 66
|
3sstr4d |
|