Metamath Proof Explorer


Definition df-line

Description: Definition of lines passing through two different points in a left module (or any extended structure having a base set, an addition, and a scalar multiplication). (Contributed by AV, 14-Jan-2023)

Ref Expression
Assertion df-line LineM=wVxBasew,yBasewxpBasew|tBaseScalarwp=1Scalarw-Scalarwtwx+wtwy

Detailed syntax breakdown

Step Hyp Ref Expression
0 cline classLineM
1 vw setvarw
2 cvv classV
3 vx setvarx
4 cbs classBase
5 1 cv setvarw
6 5 4 cfv classBasew
7 vy setvary
8 3 cv setvarx
9 8 csn classx
10 6 9 cdif classBasewx
11 vp setvarp
12 vt setvart
13 csca classScalar
14 5 13 cfv classScalarw
15 14 4 cfv classBaseScalarw
16 11 cv setvarp
17 cur class1r
18 14 17 cfv class1Scalarw
19 csg class-𝑔
20 14 19 cfv class-Scalarw
21 12 cv setvart
22 18 21 20 co class1Scalarw-Scalarwt
23 cvsca class𝑠
24 5 23 cfv classw
25 22 8 24 co class1Scalarw-Scalarwtwx
26 cplusg class+𝑔
27 5 26 cfv class+w
28 7 cv setvary
29 21 28 24 co classtwy
30 25 29 27 co class1Scalarw-Scalarwtwx+wtwy
31 16 30 wceq wffp=1Scalarw-Scalarwtwx+wtwy
32 31 12 15 wrex wfftBaseScalarwp=1Scalarw-Scalarwtwx+wtwy
33 32 11 6 crab classpBasew|tBaseScalarwp=1Scalarw-Scalarwtwx+wtwy
34 3 7 6 10 33 cmpo classxBasew,yBasewxpBasew|tBaseScalarwp=1Scalarw-Scalarwtwx+wtwy
35 1 2 34 cmpt classwVxBasew,yBasewxpBasew|tBaseScalarwp=1Scalarw-Scalarwtwx+wtwy
36 0 35 wceq wffLineM=wVxBasew,yBasewxpBasew|tBaseScalarwp=1Scalarw-Scalarwtwx+wtwy