Metamath Proof Explorer


Definition df-lm

Description: Define a function on topologies whose value is the convergence relation for sequences into the given topological space. Although f is typically a sequence (a function from an upperset of integers) with values in the topological space, it need not be. Note, however, that the limit property concerns only values at integers, so that the real-valued function ( x e. RR |-> ( sin( _pi x. x ) ) ) converges to zero (in the standard topology on the reals) with this definition. (Contributed by NM, 7-Sep-2006)

Ref Expression
Assertion df-lm t=jTopfx|fj𝑝𝑚xjujxuyranfy:yu

Detailed syntax breakdown

Step Hyp Ref Expression
0 clm classt
1 vj setvarj
2 ctop classTop
3 vf setvarf
4 vx setvarx
5 3 cv setvarf
6 1 cv setvarj
7 6 cuni classj
8 cpm class𝑝𝑚
9 cc class
10 7 9 8 co classj𝑝𝑚
11 5 10 wcel wfffj𝑝𝑚
12 4 cv setvarx
13 12 7 wcel wffxj
14 vu setvaru
15 14 cv setvaru
16 12 15 wcel wffxu
17 vy setvary
18 cuz class
19 18 crn classran
20 17 cv setvary
21 5 20 cres classfy
22 20 15 21 wf wfffy:yu
23 22 17 19 wrex wffyranfy:yu
24 16 23 wi wffxuyranfy:yu
25 24 14 6 wral wffujxuyranfy:yu
26 11 13 25 w3a wfffj𝑝𝑚xjujxuyranfy:yu
27 26 3 4 copab classfx|fj𝑝𝑚xjujxuyranfy:yu
28 1 2 27 cmpt classjTopfx|fj𝑝𝑚xjujxuyranfy:yu
29 0 28 wceq wfft=jTopfx|fj𝑝𝑚xjujxuyranfy:yu