Metamath Proof Explorer


Definition df-lno

Description: Define the class of linear operators between two normed complex vector spaces. In the literature, an operator may be a partial function, i.e., the domain of an operator is not necessarily the entire vector space. However, since the domain of a linear operator is a vector subspace, we define it with a complete function for convenience and will use subset relations to specify the partial function case. (Contributed by NM, 6-Nov-2007) (New usage is discouraged.)

Ref Expression
Assertion df-lno LnOp=uNrmCVec,wNrmCVectBaseSetwBaseSetu|xyBaseSetuzBaseSetutx𝑠OLDuy+vuz=x𝑠OLDwty+vwtz

Detailed syntax breakdown

Step Hyp Ref Expression
0 clno classLnOp
1 vu setvaru
2 cnv classNrmCVec
3 vw setvarw
4 vt setvart
5 cba classBaseSet
6 3 cv setvarw
7 6 5 cfv classBaseSetw
8 cmap class𝑚
9 1 cv setvaru
10 9 5 cfv classBaseSetu
11 7 10 8 co classBaseSetwBaseSetu
12 vx setvarx
13 cc class
14 vy setvary
15 vz setvarz
16 4 cv setvart
17 12 cv setvarx
18 cns class𝑠OLD
19 9 18 cfv class𝑠OLDu
20 14 cv setvary
21 17 20 19 co classx𝑠OLDuy
22 cpv class+v
23 9 22 cfv class+vu
24 15 cv setvarz
25 21 24 23 co classx𝑠OLDuy+vuz
26 25 16 cfv classtx𝑠OLDuy+vuz
27 6 18 cfv class𝑠OLDw
28 20 16 cfv classty
29 17 28 27 co classx𝑠OLDwty
30 6 22 cfv class+vw
31 24 16 cfv classtz
32 29 31 30 co classx𝑠OLDwty+vwtz
33 26 32 wceq wfftx𝑠OLDuy+vuz=x𝑠OLDwty+vwtz
34 33 15 10 wral wffzBaseSetutx𝑠OLDuy+vuz=x𝑠OLDwty+vwtz
35 34 14 10 wral wffyBaseSetuzBaseSetutx𝑠OLDuy+vuz=x𝑠OLDwty+vwtz
36 35 12 13 wral wffxyBaseSetuzBaseSetutx𝑠OLDuy+vuz=x𝑠OLDwty+vwtz
37 36 4 11 crab classtBaseSetwBaseSetu|xyBaseSetuzBaseSetutx𝑠OLDuy+vuz=x𝑠OLDwty+vwtz
38 1 3 2 2 37 cmpo classuNrmCVec,wNrmCVectBaseSetwBaseSetu|xyBaseSetuzBaseSetutx𝑠OLDuy+vuz=x𝑠OLDwty+vwtz
39 0 38 wceq wffLnOp=uNrmCVec,wNrmCVectBaseSetwBaseSetu|xyBaseSetuzBaseSetutx𝑠OLDuy+vuz=x𝑠OLDwty+vwtz