Description: Define the class of linear operators between two normed complex vector spaces. In the literature, an operator may be a partial function, i.e., the domain of an operator is not necessarily the entire vector space. However, since the domain of a linear operator is a vector subspace, we define it with a complete function for convenience and will use subset relations to specify the partial function case. (Contributed by NM, 6-Nov-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | df-lno | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | clno | |
|
1 | vu | |
|
2 | cnv | |
|
3 | vw | |
|
4 | vt | |
|
5 | cba | |
|
6 | 3 | cv | |
7 | 6 5 | cfv | |
8 | cmap | |
|
9 | 1 | cv | |
10 | 9 5 | cfv | |
11 | 7 10 8 | co | |
12 | vx | |
|
13 | cc | |
|
14 | vy | |
|
15 | vz | |
|
16 | 4 | cv | |
17 | 12 | cv | |
18 | cns | |
|
19 | 9 18 | cfv | |
20 | 14 | cv | |
21 | 17 20 19 | co | |
22 | cpv | |
|
23 | 9 22 | cfv | |
24 | 15 | cv | |
25 | 21 24 23 | co | |
26 | 25 16 | cfv | |
27 | 6 18 | cfv | |
28 | 20 16 | cfv | |
29 | 17 28 27 | co | |
30 | 6 22 | cfv | |
31 | 24 16 | cfv | |
32 | 29 31 30 | co | |
33 | 26 32 | wceq | |
34 | 33 15 10 | wral | |
35 | 34 14 10 | wral | |
36 | 35 12 13 | wral | |
37 | 36 4 11 | crab | |
38 | 1 3 2 2 37 | cmpo | |
39 | 0 38 | wceq | |