Metamath Proof Explorer


Definition df-mgc

Description: Define monotone Galois connections. See mgcval for an expanded version. (Contributed by Thierry Arnoux, 20-Apr-2024)

Ref Expression
Assertion df-mgc Could not format assertion : No typesetting found for |- MGalConn = ( v e. _V , w e. _V |-> [_ ( Base ` v ) / a ]_ [_ ( Base ` w ) / b ]_ { <. f , g >. | ( ( f e. ( b ^m a ) /\ g e. ( a ^m b ) ) /\ A. x e. a A. y e. b ( ( f ` x ) ( le ` w ) y <-> x ( le ` v ) ( g ` y ) ) ) } ) with typecode |-

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmgc Could not format MGalConn : No typesetting found for class MGalConn with typecode class
1 vv setvar v
2 cvv class V
3 vw setvar w
4 cbs class Base
5 1 cv setvar v
6 5 4 cfv class Base v
7 va setvar a
8 3 cv setvar w
9 8 4 cfv class Base w
10 vb setvar b
11 vf setvar f
12 vg setvar g
13 11 cv setvar f
14 10 cv setvar b
15 cmap class 𝑚
16 7 cv setvar a
17 14 16 15 co class b a
18 13 17 wcel wff f b a
19 12 cv setvar g
20 16 14 15 co class a b
21 19 20 wcel wff g a b
22 18 21 wa wff f b a g a b
23 vx setvar x
24 vy setvar y
25 23 cv setvar x
26 25 13 cfv class f x
27 cple class le
28 8 27 cfv class w
29 24 cv setvar y
30 26 29 28 wbr wff f x w y
31 5 27 cfv class v
32 29 19 cfv class g y
33 25 32 31 wbr wff x v g y
34 30 33 wb wff f x w y x v g y
35 34 24 14 wral wff y b f x w y x v g y
36 35 23 16 wral wff x a y b f x w y x v g y
37 22 36 wa wff f b a g a b x a y b f x w y x v g y
38 37 11 12 copab class f g | f b a g a b x a y b f x w y x v g y
39 10 9 38 csb class Base w / b f g | f b a g a b x a y b f x w y x v g y
40 7 6 39 csb class Base v / a Base w / b f g | f b a g a b x a y b f x w y x v g y
41 1 3 2 2 40 cmpo class v V , w V Base v / a Base w / b f g | f b a g a b x a y b f x w y x v g y
42 0 41 wceq Could not format MGalConn = ( v e. _V , w e. _V |-> [_ ( Base ` v ) / a ]_ [_ ( Base ` w ) / b ]_ { <. f , g >. | ( ( f e. ( b ^m a ) /\ g e. ( a ^m b ) ) /\ A. x e. a A. y e. b ( ( f ` x ) ( le ` w ) y <-> x ( le ` v ) ( g ` y ) ) ) } ) : No typesetting found for wff MGalConn = ( v e. _V , w e. _V |-> [_ ( Base ` v ) / a ]_ [_ ( Base ` w ) / b ]_ { <. f , g >. | ( ( f e. ( b ^m a ) /\ g e. ( a ^m b ) ) /\ A. x e. a A. y e. b ( ( f ` x ) ( le ` w ) y <-> x ( le ` v ) ( g ` y ) ) ) } ) with typecode wff