Metamath Proof Explorer


Definition df-minply

Description: Define the minimal polynomial builder function. (Contributed by Thierry Arnoux, 19-Jan-2025)

Ref Expression
Assertion df-minply Could not format assertion : No typesetting found for |- minPoly = ( e e. _V , f e. _V |-> ( x e. ( Base ` e ) |-> ( ( idlGen1p ` ( e |`s f ) ) ` { p e. dom ( e evalSub1 f ) | ( ( ( e evalSub1 f ) ` p ) ` x ) = ( 0g ` e ) } ) ) ) with typecode |-

Detailed syntax breakdown

Step Hyp Ref Expression
0 cminply Could not format minPoly : No typesetting found for class minPoly with typecode class
1 ve setvare
2 cvv classV
3 vf setvarf
4 vx setvarx
5 cbs classBase
6 1 cv setvare
7 6 5 cfv classBasee
8 cig1p classidlGen1p
9 cress class𝑠
10 3 cv setvarf
11 6 10 9 co classe𝑠f
12 11 8 cfv classidlGen1pe𝑠f
13 vp setvarp
14 ces1 classevalSub1
15 6 10 14 co classeevalSub1f
16 15 cdm classdomeevalSub1f
17 13 cv setvarp
18 17 15 cfv classeevalSub1fp
19 4 cv setvarx
20 19 18 cfv classeevalSub1fpx
21 c0g class0𝑔
22 6 21 cfv class0e
23 20 22 wceq wffeevalSub1fpx=0e
24 23 13 16 crab classpdomeevalSub1f|eevalSub1fpx=0e
25 24 12 cfv classidlGen1pe𝑠fpdomeevalSub1f|eevalSub1fpx=0e
26 4 7 25 cmpt classxBaseeidlGen1pe𝑠fpdomeevalSub1f|eevalSub1fpx=0e
27 1 3 2 2 26 cmpo classeV,fVxBaseeidlGen1pe𝑠fpdomeevalSub1f|eevalSub1fpx=0e
28 0 27 wceq Could not format minPoly = ( e e. _V , f e. _V |-> ( x e. ( Base ` e ) |-> ( ( idlGen1p ` ( e |`s f ) ) ` { p e. dom ( e evalSub1 f ) | ( ( ( e evalSub1 f ) ` p ) ` x ) = ( 0g ` e ) } ) ) ) : No typesetting found for wff minPoly = ( e e. _V , f e. _V |-> ( x e. ( Base ` e ) |-> ( ( idlGen1p ` ( e |`s f ) ) ` { p e. dom ( e evalSub1 f ) | ( ( ( e evalSub1 f ) ` p ) ` x ) = ( 0g ` e ) } ) ) ) with typecode wff