Metamath Proof Explorer


Definition df-polarityN

Description: Define polarity of projective subspace, which is a kind of complement of the subspace. Item 2 in Holland95 p. 222 bottom. For more generality, we define it for all subsets of atoms, not just projective subspaces. The intersection with Atomsl ensures it is defined when m = (/) . (Contributed by NM, 23-Oct-2011)

Ref Expression
Assertion df-polarityN 𝑃=lVm𝒫AtomslAtomslpmpmaploclp

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpolN class𝑃
1 vl setvarl
2 cvv classV
3 vm setvarm
4 catm classAtoms
5 1 cv setvarl
6 5 4 cfv classAtomsl
7 6 cpw class𝒫Atomsl
8 vp setvarp
9 3 cv setvarm
10 cpmap classpmap
11 5 10 cfv classpmapl
12 coc classoc
13 5 12 cfv classocl
14 8 cv setvarp
15 14 13 cfv classoclp
16 15 11 cfv classpmaploclp
17 8 9 16 ciin classpmpmaploclp
18 6 17 cin classAtomslpmpmaploclp
19 3 7 18 cmpt classm𝒫AtomslAtomslpmpmaploclp
20 1 2 19 cmpt classlVm𝒫AtomslAtomslpmpmaploclp
21 0 20 wceq wff𝑃=lVm𝒫AtomslAtomslpmpmaploclp