Metamath Proof Explorer


Definition df-polarityN

Description: Define polarity of projective subspace, which is a kind of complement of the subspace. Item 2 in Holland95 p. 222 bottom. For more generality, we define it for all subsets of atoms, not just projective subspaces. The intersection with Atomsl ensures it is defined when m = (/) . (Contributed by NM, 23-Oct-2011)

Ref Expression
Assertion df-polarityN 𝑃 = ( 𝑙 ∈ V ↦ ( 𝑚 ∈ 𝒫 ( Atoms ‘ 𝑙 ) ↦ ( ( Atoms ‘ 𝑙 ) ∩ 𝑝𝑚 ( ( pmap ‘ 𝑙 ) ‘ ( ( oc ‘ 𝑙 ) ‘ 𝑝 ) ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpolN 𝑃
1 vl 𝑙
2 cvv V
3 vm 𝑚
4 catm Atoms
5 1 cv 𝑙
6 5 4 cfv ( Atoms ‘ 𝑙 )
7 6 cpw 𝒫 ( Atoms ‘ 𝑙 )
8 vp 𝑝
9 3 cv 𝑚
10 cpmap pmap
11 5 10 cfv ( pmap ‘ 𝑙 )
12 coc oc
13 5 12 cfv ( oc ‘ 𝑙 )
14 8 cv 𝑝
15 14 13 cfv ( ( oc ‘ 𝑙 ) ‘ 𝑝 )
16 15 11 cfv ( ( pmap ‘ 𝑙 ) ‘ ( ( oc ‘ 𝑙 ) ‘ 𝑝 ) )
17 8 9 16 ciin 𝑝𝑚 ( ( pmap ‘ 𝑙 ) ‘ ( ( oc ‘ 𝑙 ) ‘ 𝑝 ) )
18 6 17 cin ( ( Atoms ‘ 𝑙 ) ∩ 𝑝𝑚 ( ( pmap ‘ 𝑙 ) ‘ ( ( oc ‘ 𝑙 ) ‘ 𝑝 ) ) )
19 3 7 18 cmpt ( 𝑚 ∈ 𝒫 ( Atoms ‘ 𝑙 ) ↦ ( ( Atoms ‘ 𝑙 ) ∩ 𝑝𝑚 ( ( pmap ‘ 𝑙 ) ‘ ( ( oc ‘ 𝑙 ) ‘ 𝑝 ) ) ) )
20 1 2 19 cmpt ( 𝑙 ∈ V ↦ ( 𝑚 ∈ 𝒫 ( Atoms ‘ 𝑙 ) ↦ ( ( Atoms ‘ 𝑙 ) ∩ 𝑝𝑚 ( ( pmap ‘ 𝑙 ) ‘ ( ( oc ‘ 𝑙 ) ‘ 𝑝 ) ) ) ) )
21 0 20 wceq 𝑃 = ( 𝑙 ∈ V ↦ ( 𝑚 ∈ 𝒫 ( Atoms ‘ 𝑙 ) ↦ ( ( Atoms ‘ 𝑙 ) ∩ 𝑝𝑚 ( ( pmap ‘ 𝑙 ) ‘ ( ( oc ‘ 𝑙 ) ‘ 𝑝 ) ) ) ) )