| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cpolN |
|- _|_P |
| 1 |
|
vl |
|- l |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vm |
|- m |
| 4 |
|
catm |
|- Atoms |
| 5 |
1
|
cv |
|- l |
| 6 |
5 4
|
cfv |
|- ( Atoms ` l ) |
| 7 |
6
|
cpw |
|- ~P ( Atoms ` l ) |
| 8 |
|
vp |
|- p |
| 9 |
3
|
cv |
|- m |
| 10 |
|
cpmap |
|- pmap |
| 11 |
5 10
|
cfv |
|- ( pmap ` l ) |
| 12 |
|
coc |
|- oc |
| 13 |
5 12
|
cfv |
|- ( oc ` l ) |
| 14 |
8
|
cv |
|- p |
| 15 |
14 13
|
cfv |
|- ( ( oc ` l ) ` p ) |
| 16 |
15 11
|
cfv |
|- ( ( pmap ` l ) ` ( ( oc ` l ) ` p ) ) |
| 17 |
8 9 16
|
ciin |
|- |^|_ p e. m ( ( pmap ` l ) ` ( ( oc ` l ) ` p ) ) |
| 18 |
6 17
|
cin |
|- ( ( Atoms ` l ) i^i |^|_ p e. m ( ( pmap ` l ) ` ( ( oc ` l ) ` p ) ) ) |
| 19 |
3 7 18
|
cmpt |
|- ( m e. ~P ( Atoms ` l ) |-> ( ( Atoms ` l ) i^i |^|_ p e. m ( ( pmap ` l ) ` ( ( oc ` l ) ` p ) ) ) ) |
| 20 |
1 2 19
|
cmpt |
|- ( l e. _V |-> ( m e. ~P ( Atoms ` l ) |-> ( ( Atoms ` l ) i^i |^|_ p e. m ( ( pmap ` l ) ` ( ( oc ` l ) ` p ) ) ) ) ) |
| 21 |
0 20
|
wceq |
|- _|_P = ( l e. _V |-> ( m e. ~P ( Atoms ` l ) |-> ( ( Atoms ` l ) i^i |^|_ p e. m ( ( pmap ` l ) ` ( ( oc ` l ) ` p ) ) ) ) ) |