| Step |
Hyp |
Ref |
Expression |
| 1 |
|
polfval.o |
|- ._|_ = ( oc ` K ) |
| 2 |
|
polfval.a |
|- A = ( Atoms ` K ) |
| 3 |
|
polfval.m |
|- M = ( pmap ` K ) |
| 4 |
|
polfval.p |
|- P = ( _|_P ` K ) |
| 5 |
|
elex |
|- ( K e. B -> K e. _V ) |
| 6 |
|
fveq2 |
|- ( h = K -> ( Atoms ` h ) = ( Atoms ` K ) ) |
| 7 |
6 2
|
eqtr4di |
|- ( h = K -> ( Atoms ` h ) = A ) |
| 8 |
7
|
pweqd |
|- ( h = K -> ~P ( Atoms ` h ) = ~P A ) |
| 9 |
|
fveq2 |
|- ( h = K -> ( pmap ` h ) = ( pmap ` K ) ) |
| 10 |
9 3
|
eqtr4di |
|- ( h = K -> ( pmap ` h ) = M ) |
| 11 |
|
fveq2 |
|- ( h = K -> ( oc ` h ) = ( oc ` K ) ) |
| 12 |
11 1
|
eqtr4di |
|- ( h = K -> ( oc ` h ) = ._|_ ) |
| 13 |
12
|
fveq1d |
|- ( h = K -> ( ( oc ` h ) ` p ) = ( ._|_ ` p ) ) |
| 14 |
10 13
|
fveq12d |
|- ( h = K -> ( ( pmap ` h ) ` ( ( oc ` h ) ` p ) ) = ( M ` ( ._|_ ` p ) ) ) |
| 15 |
14
|
adantr |
|- ( ( h = K /\ p e. m ) -> ( ( pmap ` h ) ` ( ( oc ` h ) ` p ) ) = ( M ` ( ._|_ ` p ) ) ) |
| 16 |
15
|
iineq2dv |
|- ( h = K -> |^|_ p e. m ( ( pmap ` h ) ` ( ( oc ` h ) ` p ) ) = |^|_ p e. m ( M ` ( ._|_ ` p ) ) ) |
| 17 |
7 16
|
ineq12d |
|- ( h = K -> ( ( Atoms ` h ) i^i |^|_ p e. m ( ( pmap ` h ) ` ( ( oc ` h ) ` p ) ) ) = ( A i^i |^|_ p e. m ( M ` ( ._|_ ` p ) ) ) ) |
| 18 |
8 17
|
mpteq12dv |
|- ( h = K -> ( m e. ~P ( Atoms ` h ) |-> ( ( Atoms ` h ) i^i |^|_ p e. m ( ( pmap ` h ) ` ( ( oc ` h ) ` p ) ) ) ) = ( m e. ~P A |-> ( A i^i |^|_ p e. m ( M ` ( ._|_ ` p ) ) ) ) ) |
| 19 |
|
df-polarityN |
|- _|_P = ( h e. _V |-> ( m e. ~P ( Atoms ` h ) |-> ( ( Atoms ` h ) i^i |^|_ p e. m ( ( pmap ` h ) ` ( ( oc ` h ) ` p ) ) ) ) ) |
| 20 |
2
|
fvexi |
|- A e. _V |
| 21 |
20
|
pwex |
|- ~P A e. _V |
| 22 |
21
|
mptex |
|- ( m e. ~P A |-> ( A i^i |^|_ p e. m ( M ` ( ._|_ ` p ) ) ) ) e. _V |
| 23 |
18 19 22
|
fvmpt |
|- ( K e. _V -> ( _|_P ` K ) = ( m e. ~P A |-> ( A i^i |^|_ p e. m ( M ` ( ._|_ ` p ) ) ) ) ) |
| 24 |
4 23
|
eqtrid |
|- ( K e. _V -> P = ( m e. ~P A |-> ( A i^i |^|_ p e. m ( M ` ( ._|_ ` p ) ) ) ) ) |
| 25 |
5 24
|
syl |
|- ( K e. B -> P = ( m e. ~P A |-> ( A i^i |^|_ p e. m ( M ` ( ._|_ ` p ) ) ) ) ) |