Metamath Proof Explorer


Theorem polfvalN

Description: The projective subspace polarity function. (Contributed by NM, 23-Oct-2011) (New usage is discouraged.)

Ref Expression
Hypotheses polfval.o = ( oc ‘ 𝐾 )
polfval.a 𝐴 = ( Atoms ‘ 𝐾 )
polfval.m 𝑀 = ( pmap ‘ 𝐾 )
polfval.p 𝑃 = ( ⊥𝑃𝐾 )
Assertion polfvalN ( 𝐾𝐵𝑃 = ( 𝑚 ∈ 𝒫 𝐴 ↦ ( 𝐴 𝑝𝑚 ( 𝑀 ‘ ( 𝑝 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 polfval.o = ( oc ‘ 𝐾 )
2 polfval.a 𝐴 = ( Atoms ‘ 𝐾 )
3 polfval.m 𝑀 = ( pmap ‘ 𝐾 )
4 polfval.p 𝑃 = ( ⊥𝑃𝐾 )
5 elex ( 𝐾𝐵𝐾 ∈ V )
6 fveq2 ( = 𝐾 → ( Atoms ‘ ) = ( Atoms ‘ 𝐾 ) )
7 6 2 eqtr4di ( = 𝐾 → ( Atoms ‘ ) = 𝐴 )
8 7 pweqd ( = 𝐾 → 𝒫 ( Atoms ‘ ) = 𝒫 𝐴 )
9 fveq2 ( = 𝐾 → ( pmap ‘ ) = ( pmap ‘ 𝐾 ) )
10 9 3 eqtr4di ( = 𝐾 → ( pmap ‘ ) = 𝑀 )
11 fveq2 ( = 𝐾 → ( oc ‘ ) = ( oc ‘ 𝐾 ) )
12 11 1 eqtr4di ( = 𝐾 → ( oc ‘ ) = )
13 12 fveq1d ( = 𝐾 → ( ( oc ‘ ) ‘ 𝑝 ) = ( 𝑝 ) )
14 10 13 fveq12d ( = 𝐾 → ( ( pmap ‘ ) ‘ ( ( oc ‘ ) ‘ 𝑝 ) ) = ( 𝑀 ‘ ( 𝑝 ) ) )
15 14 adantr ( ( = 𝐾𝑝𝑚 ) → ( ( pmap ‘ ) ‘ ( ( oc ‘ ) ‘ 𝑝 ) ) = ( 𝑀 ‘ ( 𝑝 ) ) )
16 15 iineq2dv ( = 𝐾 𝑝𝑚 ( ( pmap ‘ ) ‘ ( ( oc ‘ ) ‘ 𝑝 ) ) = 𝑝𝑚 ( 𝑀 ‘ ( 𝑝 ) ) )
17 7 16 ineq12d ( = 𝐾 → ( ( Atoms ‘ ) ∩ 𝑝𝑚 ( ( pmap ‘ ) ‘ ( ( oc ‘ ) ‘ 𝑝 ) ) ) = ( 𝐴 𝑝𝑚 ( 𝑀 ‘ ( 𝑝 ) ) ) )
18 8 17 mpteq12dv ( = 𝐾 → ( 𝑚 ∈ 𝒫 ( Atoms ‘ ) ↦ ( ( Atoms ‘ ) ∩ 𝑝𝑚 ( ( pmap ‘ ) ‘ ( ( oc ‘ ) ‘ 𝑝 ) ) ) ) = ( 𝑚 ∈ 𝒫 𝐴 ↦ ( 𝐴 𝑝𝑚 ( 𝑀 ‘ ( 𝑝 ) ) ) ) )
19 df-polarityN 𝑃 = ( ∈ V ↦ ( 𝑚 ∈ 𝒫 ( Atoms ‘ ) ↦ ( ( Atoms ‘ ) ∩ 𝑝𝑚 ( ( pmap ‘ ) ‘ ( ( oc ‘ ) ‘ 𝑝 ) ) ) ) )
20 2 fvexi 𝐴 ∈ V
21 20 pwex 𝒫 𝐴 ∈ V
22 21 mptex ( 𝑚 ∈ 𝒫 𝐴 ↦ ( 𝐴 𝑝𝑚 ( 𝑀 ‘ ( 𝑝 ) ) ) ) ∈ V
23 18 19 22 fvmpt ( 𝐾 ∈ V → ( ⊥𝑃𝐾 ) = ( 𝑚 ∈ 𝒫 𝐴 ↦ ( 𝐴 𝑝𝑚 ( 𝑀 ‘ ( 𝑝 ) ) ) ) )
24 4 23 syl5eq ( 𝐾 ∈ V → 𝑃 = ( 𝑚 ∈ 𝒫 𝐴 ↦ ( 𝐴 𝑝𝑚 ( 𝑀 ‘ ( 𝑝 ) ) ) ) )
25 5 24 syl ( 𝐾𝐵𝑃 = ( 𝑚 ∈ 𝒫 𝐴 ↦ ( 𝐴 𝑝𝑚 ( 𝑀 ‘ ( 𝑝 ) ) ) ) )