Metamath Proof Explorer


Definition df-ram

Description: Define the Ramsey number function. The input is a number m for the size of the edges of the hypergraph, and a tuple r from the finite color set to lower bounds for each color. The Ramsey number ( M Ramsey R ) is the smallest number such that for any set S with ( M Ramsey R ) <_ # S and any coloring F of the set of M -element subsets of S (with color set dom R ), there is a color c e. dom R and a subset x C_ S such that R ( c ) <_ # x and all the hyperedges of x (that is, subsets of x of size M ) have color c . (Contributed by Mario Carneiro, 20-Apr-2015) (Revised by AV, 14-Sep-2020)

Ref Expression
Assertion df-ram Ramsey=m0,rVsupn0|snsfdomry𝒫s|y=mcdomrx𝒫srcxy𝒫xy=mfy=c*<

Detailed syntax breakdown

Step Hyp Ref Expression
0 cram classRamsey
1 vm setvarm
2 cn0 class0
3 vr setvarr
4 cvv classV
5 vn setvarn
6 vs setvars
7 5 cv setvarn
8 cle class
9 chash class.
10 6 cv setvars
11 10 9 cfv classs
12 7 11 8 wbr wffns
13 vf setvarf
14 3 cv setvarr
15 14 cdm classdomr
16 cmap class𝑚
17 vy setvary
18 10 cpw class𝒫s
19 17 cv setvary
20 19 9 cfv classy
21 1 cv setvarm
22 20 21 wceq wffy=m
23 22 17 18 crab classy𝒫s|y=m
24 15 23 16 co classdomry𝒫s|y=m
25 vc setvarc
26 vx setvarx
27 25 cv setvarc
28 27 14 cfv classrc
29 26 cv setvarx
30 29 9 cfv classx
31 28 30 8 wbr wffrcx
32 29 cpw class𝒫x
33 13 cv setvarf
34 19 33 cfv classfy
35 34 27 wceq wfffy=c
36 22 35 wi wffy=mfy=c
37 36 17 32 wral wffy𝒫xy=mfy=c
38 31 37 wa wffrcxy𝒫xy=mfy=c
39 38 26 18 wrex wffx𝒫srcxy𝒫xy=mfy=c
40 39 25 15 wrex wffcdomrx𝒫srcxy𝒫xy=mfy=c
41 40 13 24 wral wfffdomry𝒫s|y=mcdomrx𝒫srcxy𝒫xy=mfy=c
42 12 41 wi wffnsfdomry𝒫s|y=mcdomrx𝒫srcxy𝒫xy=mfy=c
43 42 6 wal wffsnsfdomry𝒫s|y=mcdomrx𝒫srcxy𝒫xy=mfy=c
44 43 5 2 crab classn0|snsfdomry𝒫s|y=mcdomrx𝒫srcxy𝒫xy=mfy=c
45 cxr class*
46 clt class<
47 44 45 46 cinf classsupn0|snsfdomry𝒫s|y=mcdomrx𝒫srcxy𝒫xy=mfy=c*<
48 1 3 2 4 47 cmpo classm0,rVsupn0|snsfdomry𝒫s|y=mcdomrx𝒫srcxy𝒫xy=mfy=c*<
49 0 48 wceq wffRamsey=m0,rVsupn0|snsfdomry𝒫s|y=mcdomrx𝒫srcxy𝒫xy=mfy=c*<