Metamath Proof Explorer


Definition df-rank

Description: Define the rank function. See rankval , rankval2 , rankval3 , or rankval4 its value. The rank is a kind of "inverse" of the cumulative hierarchy of sets function R1 : given a set, it returns an ordinal number telling us the smallest layer of the hierarchy to which the set belongs. Based on Definition 9.14 of TakeutiZaring p. 79. Theorem rankid illustrates the "inverse" concept. Another nice theorem showing the relationship is rankr1a . (Contributed by NM, 11-Oct-2003)

Ref Expression
Assertion df-rank rank = x V y On | x R1 suc y

Detailed syntax breakdown

Step Hyp Ref Expression
0 crnk class rank
1 vx setvar x
2 cvv class V
3 vy setvar y
4 con0 class On
5 1 cv setvar x
6 cr1 class R1
7 3 cv setvar y
8 7 csuc class suc y
9 8 6 cfv class R1 suc y
10 5 9 wcel wff x R1 suc y
11 10 3 4 crab class y On | x R1 suc y
12 11 cint class y On | x R1 suc y
13 1 2 12 cmpt class x V y On | x R1 suc y
14 0 13 wceq wff rank = x V y On | x R1 suc y